
A User's Viewpoint on the Programmer's Workbench

M. H. Bianchi
J. L. Wood

Bell Laboratories
Piscataway, New Jersey 08854

Keywords: Software development, programming aids, UNIX.

Abstract: The Programmer's Workbench boasts a broad set of
highly useful features aimed at the application program
developer. It claims to be a "human-end" computer providing
tools and services to ease the load on the application system
designer, programmer, documenter, tester, and delivery person-
nel. This paper shows the benefits of using the PWB tools, indivi-
dually and in combination. Through specific examples drawn
from the history of a software project, evidence is given that the
use of the Programmer's Workbench can be a major contributing
factor in the successful development of a software project.

1. RELATION OF CDS DEVELOPMENT GROUP TO PWB

The Circuit Design System (CDS) group was getting ready to
write code at about the time that the Programmer's Workbench
(PWB) was starting to accept customers. An informal arrange-
ment was made to allow the authors to try out the new system.
After about a month of discovering the tools that PWB offered,
the arrangement was made official. For a while, CDS was the
heaviest application development user on the Workbench, and
hence we were the first to ask many questions and make many
comments.

We have seen the Workbench grow and have been users for
over two years. Unlike the developers of the PWB, we are only
users. We will demonstrate through discussion of our experi-
ences that the Programmer's Workbench concept is viable.
Moreover, we will show that the actual PWB at Bell Laboratories
is a most important contributor to the successful development of
a project that ultimately runs in an unrelated environment.

Many of the PWB'S facilities can be found on other systems in
some form or other. From the user's viewpoint, the PWB pro-
vides an unusual variety of program development tools in a sin-
gle, uniform, and easy to manage environment. This paper is not
intended as a catalog of new or exotic facilities, but as a sum-
mary of one group's experience in using the tools provided.

We will be talking about PWB strictly from the viewpoint of a
user who does not see, and is generally unconcerned with, the
details of PWB implementation. The reader should be familiar
with [DOL76A], which provides an overview of the PWB and a
rationale for its existence. [RIT74Al describes UNIX, the time-
sharing system on which the PWB is based. Finally, the discus-
sions in [MAS76A] may improve the reader's understanding of
some of the more complex examples presented here.

2. CDS--A QUICK OVERVIEW

The Circuit Design System mechanizes certain functions per-
formed in the day-to-day activities of a Bell System operating
telephone company. It uses other software systems written at
Bell Laboratories to provide data base information, but its own
emphasis is strongly in the engineering field. During the
development cycle, the majority of our personnel were commun-
ications engineers and not data processing professionals.

The system itself must coexist with another system that uti-
lizes IBM's Information Management System (IMS) to provide
hierarchical data base management and transactional telecom-
munications [IBM75B].

The purpose of the first development cycle was to test the
feasibility of the engineering process. Therefore, we had two
secondary objectives. The first was to use the cheapest equip-
ment possible, and the second was to minimize overall experi-
mental costs. Our final product contained 196 PL/I program
modules and 6 data bases accessed from dial-up terminals.

The developers themselves had to perform all the tasks
involved in program maintenance. PWB allowed us to set tip pro-
cedures that drastically reduced the amount of time required to
maintain the system. In many instances, whole tasks, such as
partitioned dataset compression, were made totally automatic.

3. ENVIRONMENT BEFORE PWB

The primary program development tools available at our location
were Applied Data Research's L IBRARIAN [ADR73A] and IBM's
standard utilities [IBM72AI. The source editing features of these
programs do not lend themselves to making complex updates to
modules. Moving blocks of code from one section of code to
another is almost prohibitively difficult. Thus, as a program is
modified, it becomes riddled with branches that have nothing to
do with the implementation of the algorithm. Also, it is a batch
system and an error in editing can ruin a half-day's work.

4. EARLY PWB TOOLS

The first version of PWB to which CDS was exposed was a DEC
PDP-11/45 running UNIX plus a Remote Job Entry (RJE) capa-
bility. Many of the programs that were to enhance the PWB con-
cept were still in development.

But the early support provided by this one system was of
great value to us. We found it relatively easy to use, extremely
reliable, and adaptable to many of our needs with little effort.

4.1 The Text Editor

At first, the major tool used was the UNIX text editor, ed, with its
very terse syntax and surprising flexibility. Previous experience
with the QED style of editor was a definite advantage in learning
about ed. The first real work done with ed was to enter two
small PL/I programs for use in the CDS project. These were
thought out and entered at the terminal by the programmer.
This early exercise convinced us that ed was going to be a valu-
able tool. We were impressed by the ease of editing and moving
code around, the time saved by entering code directly into a
computer rather than using coding forms and keypunches, and
the ability to "desk check" while at the terminal.

4.2 The UNIX File System

UNIX presented us with a true tree-structured file system that
allowed us to build logical relationships between its files and
directories (leaves and nodes).

The CDS directory became the root of our "program tree"
which we present in part in Figure 1. We built personal direc-
tories ("doug", "joe", etc.) and directories that were the reposi-
tories of related modules of source code. Programs that relate to
CDS concepts are found in directories "af01", "cr01", and
"ed01". Documentation is found in "doe". Files of Job Control
Language are in " jc l ' . Test data is in "test". Directory "rY'
contains directories of CDS Release 3 files. The ability to create

193

I I
: :

1 l
af01 cr01

I 1
ed01 doug

/u 1/cds

I
mike I

joe common doc jcl martha

I I I
nancy r3 test

comcode

Figure 1. The CDS File System

meaningful collections of data files, reasonably named, under
directories, also reasonably named, proved to be a major asset. It
was now possible to produce quickly lists of all programs coded,
those related to a particular concept, those which adhered to par-
ticular naming conventions, and those related to a particular con-
cept that adhered to particular naming conventions.

In theory, this type of grouping and classifying of ideas or
programs is possible on other computer systems through naming
conventions. But PWB provided the tools that allowed one to go
right into the file system and make the computer do the search-
ing. By the time CDS consisted of 140 independently compiled
procedures, this feature became invaluable. Our cross-reference
listing procedure is shown in detail later.

4.3 S e n d - - t h e RJE Program

The send command allowed us to communicate with the IBM tar-
get computer via Remote Job Entry. This is about all that the
first version did. The command line

send jobcard plijcl source

would send the file "jobcard", followed by the file "plijcl", fol-
lowed by "source". But send also assigned special meaning to the
"tilde" (-) character. In particular, a line of the form:

- filename

read that file as the source of text, and a line of the form:

read from the terminal, with a prompt of "input:", for the text.
The ", in what came to be called "send-speak", was put to
work. Rather than have the programmer enter all of the file
names to be sent on the command line, we had send prompt for
each input item, and lines like "-plixclg" (for PL/I Optimizer
compile, linkage edit and go) and "-cdsed01" (for the source
code for program CDSED01) were the responses.

We used the "-f i lename" form embedded in our code to
implement the idea of common code, "comcode" for short. Our
"comcode" was stored in a directory by that name. Each file
contained one program concept. In the majority of cases these
were PL/I DECLARE statements of structures that represented
data base segments, input formats, and IMS control structures.
There were 200 comcode items averaging eleven lines each by
the time we were operational. Each module has an average of
4.2 "comcode" references for a saving of 46 lines per procedure.

There was another common directory called "entry" that con-
tained DECLARE statements for each of the external procedures
in CDS. By entering the following lines:

- /u 1/cds/r3/comcode/orderno
- /u 1/cds/r 3/comcode/bodyin
- / u 1/cds/r3/comcode/icferr
- /u 1/cds/r 3/ent ry/plitdli
- /u 1 icds/r3/entry/prtdate

the programmer could reference 48 lines of code that declared.

dbd entry psb

the ORDERNO and BODYIN segments of our ICF (Incomplete
Circuit File) data base, the code defining the ON CONDITION
ICFERR that handled errors in calls to the ICF, and entry
declarations for the external procedures PLITDLI and
PRTDATE.

4.4 The Text Formatter

Documentation support was provided by the text formatter, roff.
This program made it possible to sit at a terminal and enter a
draft document directly, along with an occasional format com-
mand for paragraphs, headings, etc. When finished, one asked
ro.ffto print the document in formatted form. The raw document
was entered and edited using the same text editor that was used
for entering code, ed. Not only did this save having to learn a
separate editor for use with the text formatter, but we could
easily include sections of code in our documents, and vice versa,
without having to retype them.

We found that the job performed by roff was acceptable for
the documentation and day-to-day business of building a project.
We started preparing program documents, such as explanations
of CDS error messages, with this program and found it fairly easy
to keep them current and available.

Some people question the "waste of time" of typing one's
own documents. We feel that for anyone with a moderate
amount of typing skill, it takes about the same amount of time to
type as to write by hand. Many authors develop their documents
at the terminal from a few notes. So there is no time lost, and
the result is as good as or better than that from a typing pool.

Roffwas even more helpful for large documents with several
co-authors. Each author could have an up-to-date and readable
copy of the entire document at all times. Our clerk/typist found
it more rewarding to be able to correct errors or rearrange para-
graphs without having to retype an entire page or "cut and
paste," because all the time spent working on the document was
productive.

5. RECENT PWB TOOLS

More recently, PWB has increased in potential and CDS has made
use of that potential.

The ed program has not changed significantly in the last two
years, but the few changes have increased the ease with which it
can be used to do the more esoteric editing that the experienced
user inevitably desires.

Send, however, has grown in capability to the point that it is a
major tool in easing the "nuisance work" most programmers
have to deal with.

Early modifications to send added the ability to establish "key-
words" that would prompt the user, who would then respond
with appropriate answers. These were substituted into "canned"
Job Control Language files, creating custom JCL for the particu-
lar purpose at hand. The answers to the keyword prompts would
also be displayed prominently in comments, so that if there was

194

a problem, it was not necessary to try and dig out their values.
At the same time we made the prompts for file input request the
appropriate type: JCL, PL/I source, run data, control cards, etc.

The major benefit achieved here was that it was impossible to
forget a substitution because you were always asked. The result
was that we had engineers, technical assistants, and clerks who,
by learning the correct responses, repeatedly sent jobs to do test-
ing without ever seeing a JCL statement. Two JCL "gurus"
managed everything; JCL syntax errors became so infrequent as
to be curiosities. Care was taken to make the prompts for both
key words and file input consistent with the intent of the job, and
not the details of the JCL or IBM file setup. The people thought
of what they wanted to do; PwB performed the actual work of
implementing those intents. By use of these prompts, our non-
JCL oriented users could have great flexibility in sending their
jobs and still not worry about the details.

Our early JCL files emulated many of the features normally
provided by catalogued procedures. However, as our experience
increased, we found that we were doing things with our JCL files
that were not easily accomplished in catalogued procedures. In
particular, one keyword could be used to specify fields anywhere
on the JCL statements and in the source text. Also, we could
write JCL which referenced other JCL files, thus avoiding dupli-
cation and easing maintenance.

5.1 The Source Code Control System

Over the years there have been attempts to provide a means to
store, control, and document code as it is being developed. In
almost every case these systems incorporate the means of editing
the code. The PWB Source Code Control System (sccs) does not
[ROC75A]. The programmer requests a copy of the code for edit-
ing and sccs locks out any other edit requests. The programmer
then edits the source, which is an ordinary text file, by whatever
means available, usually ed. When convinced that the new form
is what is desired, the user asks sccs to record the changes and
unlock the master file to other editing, sccs also records a state-
ment of why those changes were made.

sccs puts no restriction on what the text is or how it is gen-
erated and edited. Thus, when CDS started using the sccs, our
programmers had only to learn the initial request, get, and the
final request to record the changes, delta.

5.2 NROFF--the New Text Formatter

Nroff,, the new roff, has actually been available the entire time
CDS has been on the Workbench. However, its much greater
power was gained at the cost of syntax and features which are
difficult to learn. Recently, the availability of a comprehensive
set of "macros" for doing documentation has made nroffas easy
to use as rOff[MAS76B]. All of the late CDS documentation was
done using nroff, giving superior document appearance and con-
tent in considerably less time than was previously possible.

Thus the Workbench becomes a human oriented computer
system. We spend our time working on what we want to do and
how, but on a very high level. The implementation details are
not our concern.

get ~-~edit = compile--~link & test-~delta -link & release

Figure 2. The Program Development Sequence

6.1 An Example of PWB Working for CDS

To show just how much work PWB does and how easy it is to get
it to do that work, we will trace through a basic terminal session
to change a program module, test it via compiles and runs on the
target computer, and then make the changes official and per-
manent. The sequence is shown in Figure 2,

The first step in our example terminal session is to retrieve a
copy of the original program module and to have sccs restrict
access to that module to non-editing only. The entered com-
mand line is:

get - e /u l / cds / c r01 / s . ccana l
3.1
106 lines

That gets the sccs source module "s.ccanal" for editing. The
computer 's response is printed in bold. A file "ccanal" is created
for the programmer. Sccs tells us that the current release and
level of the module are three and one, respectively, and that the
created file has 106 lines.

We will not show the editing process which is fairly standard.
Suffice it to say that there are no special considerations that the
programmer must make for sccs while editing the module.

send . . / j c l /mhb
CLASS---b
JCL:
- . . / j c l /p l ixc
RELEASE=3
pl / i source:
- ccanal
pl / i source:
~

JCL:

125 cards.

a job- card file
"B" class job (sets core and time limits)
request for job control cards
file for basic compile
release of "comcode" to be used
request for code to be compiled
reference to file to be compiled
request for further code to be compiled
conclusion of "plixc"
request for further job control cards
conclusion of " JCL" prompt and job stream
user information from send

Queued as /u l /hasp/xmit l20 .

Figure 3. User Conversation to Compile for Error Messages

6. HOW CDS USES PWB

PWB consists of many different processors, some of which per-
form quite primitive functions. It is the user's responsibility to
put these programs together i n imaginative and useful ways. It
takes a while to get used to the idea that most of the work to
accomplish a particular task has been done for you and that your
work consists mostly of piecing together the features and little
programs you need to produce the desired effect.

For example, when we want to produce a sorted list, we call
on sort to do it. We do not know or care how it gets its job done
or how much machine core or time it takes. We just call it with
arguments that indicate what is to be sorted and by what rules.
It then goes and does it. The same goes for printing, editing, file
searching, string searching, etc. The little programs do some lit-
tle thing in a reliable and flexible way. We piece them together
to do what we want.

When the programmer wishes to compile this program to
check for compiler messages, the "conversat ion" in Figure 3 is
held with PWB. What the user does not see is nine lines of JCL
which include customized comments to help identify this job and
116 line of source code.

The " JCL:" and "pl/i source:" prompts are nested and
repeated, allowing multiple compiles in one step and/or multiple
steps in a job. The " - . " discontinues the current level of nest-
ing.

6.1.1 Compile for Testing. The edit and "plixc" cycle is repeated
until the program compiles cleanly. The next step is to put it out
where it can be run in a test environment. This is done with the
conversation shown in Figure 4. We use the same job card and
the prompts have the same meaning. The file
" . . / j c l /compi le_tes t" contains JCL to do a compile and linkage
edit into a target machine library, R9411.CDS.R3.TEST.

195

send jc l /mhb
CLASS-~--d
JCL:
- . . / jc l /compi le_tes t
FILE=ccanal
PROC=ccanal
RELEASE=3
JCL:
- . . / j c l / tes t l ib
DIRECTORY=cr01
MAIN=cdscr01
RELEASE---3
JCL:
- . . / j c l /b t sba tch
d class job
RELEASE=3
BTS input:
- . . /da ta /cr01_tes t
BTS input:
~

JCL:

406 cards

a job card file
" D " class job (sets core and time limits)
request for job control cards
file to compile for testing
the file to be compiled
the name it will have when released
the release it is to be tested in
more JCL requested
file to linkage edit into the test library
the directory of the main procedure
the main procedure name
to be tested at this release
more JCL requested
execute the test library
a reminder that this must be run class " D "
the release of the test library to be used
request for input data
input data file
request for input data
conclude test data input
more JCL requested
conclude jobstream
user information from send

Queued as /u l lhasp lxmi t590 .

Figure 4. Compile and Linkage Edit for Testing

The linkage editor has the ability to identify the load module
with a "s tamp" and to provide aliases for the module. In all
source files, as a convention, there appear lines of the form:

- !echo " identify *ccanall('%R%.%L% %D% %T%')" > ccanaL.i
- !echo " alias ccnext,cccompi" > > ccanal._i

The portions within double quotes are linkage edit control cards.
These lines, when read by send, cause a file "ccanal__i" to be
created containing the card images. Then "compile_test" reads
that file at the appropriate moment, and the cards become part of
the job stream. The "ccanal_i" file is removed later. The
"%R%", "%L%", "%D%", and "%T%" are used later for sccs
release, level, date and time. Since we are not using sccs here,
but are only compiling for test, they will not be changed and
their presence in the module "s tamp" signals that this module is
an unofficial version.

The " . . / j c l / tes t l ib" file also contains a linkage edit step. It
links the main module with all of its supportive modules to
create an executable load module in the target machine's dataset
called "R9411.CDS.R3.TESTLIB". We also stamp it with the
date and time the job originated.

Finally, we add the file in " . . / j c l /b t sba tch" to the jobstream
which exercises the test library with the data in
" . . /data/cr01_test" .

Both "compile_test" and "testlib" reference the shell pro-
cedure "auto_compress". This eight line "program" keeps count
of how many updates have been sent to the partitioned datasets
used by the linkage edit steps. When the count gets to a certain
number, currently eight, a job is kicked off that compresses that
particular dataset. Since we have begun using this technique we
have not had to worry about the problem of doing "garbage col-
lection" on our partitioned datasets. Thus PWB is overcoming a
deficiency of the target computer and relieving us of work we
really should not have to do. The lines listed below are from
"compile_test". They reference the "identify" file (-PROC_i),
remove it, and execute the automatic compress. The same type
of "send-speak" appears in "testlib".

//lked.sysin dd *
- PROC_i
- .rrm - f PROC_i > / d e v / n u l l
-J.auto_compress test RELEASE; exit 0

send jcl/cds
CLASS=b
JCL:
- jcl /compile
DIRECTORY---.cr01
PROC----ccanal
RELEASE=3
3.2
114 lines
JCL:
-jcl/pgmlib
DIRECTORY=cr01
MAIN=cdscr01
RELEASE=3
JCL:

238 cards.
Queued as/ul/hasp/xmit088.

job card for administrator

new release and level from seEs
new line count from sccs

linkage edit into official program library

Figure 5. Final Compile and Linkage Edit for Release

6.1.2 Compile for Release. When the testing is completed, the
module must be made "official". We use delta to provide protec-
tion and keep a history of the changes. The user would type the
SCCS command line:

delta ../cr01/s.ccanal
history? Change the choice code analysis - tr 76061-1
87 unchanged
27 inserted
19 deleted

The final steps are to compile the deltaed module and to link it
into the "official" executable library. This is done by the CDS
program administrator, who sends the job stream shown in Fig-
ure 5. The information from sccs appears because the
"jcl /compile" file contains a get (without edit) to obtain the PL/I
source for send. The command line within that file is:

~ !ge t /u 1/cds/DIRECTORY/s.PROC - r R E L E A S E -1 - p

The " - 1 " asks for the complete history of this file to be put in a
file called "I.PROC" (in this case, "l.ccanal") and the " - p "
causes the output of get to go directly to send without using any
intervening file.

The %R%, %L%, etc. we saw earlier now come into use. sccs
changes %R% to the release number, %L% to the level, and %D%
and %T% to the date and time the get was done. This informa-
tion is scattered through the source code on comments to help
the user, and appears on the identify card we saw earlier in the
"PROC_i" file, ccanal_i:

identify *ccanall('3.2 76/03/13 17:39:09')
alias ccnext,cccompi

So now our load module is stamped with the release, level, date,
and time of our module. We now can easily determine if a par-
ticular version is up to date.

The "jcl /compile" has an extra step in it to print the history
that sccs provided as part of the compile listing. Since that his-
tory tells when and who did what to this module, the listing pro-
duced is a complete document of this module to date, That's a
handy thing to have, especially if people get into the habit of giv-
ing reasonable histories to delta. Histories that say "debug" are
not all that useful.

The "jcl /pgmlib" file is much like the "jcl/testlib" we saw
earlier. However, the read permission is resticted to the CDS
program administrator so that only that person is able to send it.
It also has an extra step after the linkage edit to create a listing
of all the "identify" stamps that we put on our load modules.
Thus the linkage edit listing includes a complete list of all CDS
modules in the executable module, including their SCCS release,

196

level, and the date and time they were retrieved from sccs,
which was a useful thing to have when we were not sure what
version was last compiled.

Again, "jcl /compile" and "jcl /pgmlib" both use the
"auto_compress" to keep things on the target machine clean.

We would point out that most of the automatic processes we
show would have to be performed by hand or by writing special
programs if we were to use the facilities available on the target
computer. I'WB has totally relieved us of the drudgery of the
manual process and even hidden the work being done.

6.2 Using PWB To Analyze Output

The RJE process permits the returning of output to PWB instead
of having it printed. The "big file scanner", bfs, is used to scan
large files. The authors have used this to some advantage. We
have a bfs script that searches PL/I compiler output for the
significant diagnostics, linkage editor complaints, and the printout
from the actual run. When the project goes into "panic mode,"
this is very useful for first compiles and test case drivers. We
also use it on a casual basis during the normal work day. Being
able to look at twenty lines of significant diagnostics rather than
twenty pages of output is convenient and we still can go back for
details.

7. IS PWB WORTH IT?

That is the real point of all this: is it really worth learning
another system to gain the benefits of PWB. 9

7.1 Productivity

PWB increases programmer productivity in a number of
significant ways.

7.1.1 Fewer Steps in Coding. Generally, one step is eliminated in
transferring an idea into the code of a program. The usual
sequence of events for a batch card-oriented system is:

• Rough draft the idea into a flowchart, or some code or short-
hand form.

• Expand into code on a coding form, hand written.
• Keypunch the code (either by the author or by a keypunch

service).
• Wrap the code in a JCL deck and take to the computer center

to be compiled.

In CDS we have observed that the second step is frequently
skipped. The programmer arrives at the terminal with a rough
draft of what is intended and refines it while entering it via the
editor. So the terminal serves the purpose of the coding form.

Obviously, there is no wait for the keypunch service nor are
any physical cards generated. And finally there is no need to go
to the computer counter to push the deck across. The send com-
mand does that for you.

When that first compile comes back with its inevitable diag-
nostic messages, the next savings are realized. The programmer
can log into UNIX and directly add that missing comma, include
the forgotten argument, or move a misplaced statement. There
is no need to write up another coding sheet, or duplicate cards,
or shuffle cards. Just log in, correct, and send again.

Thus, in terms of the productivity to be gained through
reductions in duplicated effort and trips to the computer center,
PWB provides significant enhancements relative to the card-
oriented environment.

7.1.2 "Automatic" Documentation and File Maintenance. Since the
Source Code Control System keeps both the code and the history
of updates, and since the Job Control files are flexible and yet
always consistent, the Workbench performs all the functions
normally assigned to a Program Librarian. We have a "daily dae-
mon" which runs every weekday at 5 am. It "mails" reports to
programmers on files added and removed since the previous

working day. If something disappears, either through a system
failure (which is rare), or a programmer error (much more com-
mon), we usually know about it within 48 hours and can get it
backed up. On Fridays, it sends a job to produce a usage report
on all of our IBM datasets so that we can stay ahead of our
requirements, rather than reacting to crises. Before we built the
"auto_compress" discussed in Section 6.1.1, the daily daemon
also sent a job to compress all of our partitioned datasets.

In terms of the productivity gained by automating the work
associated with staying ahead of the demands that CDS was mak-
ing on the target machine, PWB was again very helpful.

7.1.3 Non-Programer Productivity. As we mentioned earlier, there
was a fair amount of telephone engineering being done in the
CDS project. The people who were involved did not know, and
did not wish to learn, the various intricacies of JCL and IMS
which the programmers live with. By using the Workbench as a
filter, they were not forced to learn these extraneous systems,
and thus could concentrate on designing CDS.

The programmers and those of us providing the JCL and IMS
support also found the layer of filtering helped us concentrate on
getting the programs working. Far less time was spent chasing
down JCL syntax errors, recovering from dropped or misplaced
decks, or counseling people on how to read crypti~ messages.

True, there was a price to pay: learning enough about the key
features of the PWB to make it work for us. But relative to the
extraneous education we avoided for eight of our people, the
time spent learning about UNIX was not very significant.

7.2 Better Code?

It is one thing to do a job faster. Does PWB help to do it better?

7.2.1 Program Style and Structure. The popular concepts of pro-
gram structure and style are much touted in the literature, but
we suspect most software shops are finding them difficult to
implement. It is just a pain to have to re-code working code,
"just to make it look pretty". We found that the use of PWB
helped and even encouraged our programmers to write new code
using the "good style" concepts. It was also possible to take
existing code and "structure" it without changing a single charac-
ter of actual code. One simply spaced it out, indented, and
blocked as required. That did not change anything as far as the
final compiled machine code was concerned, but made it much
easier to maintain.

The ability to plagiarize well written code and modify it just a
little bit was quickly discovered. This technique was used when
a piece of common code could not be constructed for a particular
purpose. A generalized solution to the problem would be made
available and each programmer would adapt it as needed.

7.2.2 Sharing Code. The "comcode" idea mentioned earlier pro-
vided consistency in naming and usage of CDS concepts every-
where they appeared, and they appeared everywhere. Program-
mers working on opposite ends of the system had no trouble
talking about data concepts that they had to share since they
shared the same "comcode" for those concepts. The first time
that inter-program communication was attempted via our data
base, it worked? Also, since our "comcode" items were liberally
and intelligently commented, every program that used them
benefited.

Just as important was the effort saved. On the average, the
programmer saved ten lines of coding every time a comcode was
referenced. Thus, the naming conventions were easy to enforce
since it was easier to use them than not.

7.2.3 Keeping Names Meaningful. Many more times than once in
CDS we were faced with this problem: This variable no longer
means what its name implies. It should really be changed to be
more meaningful. "But it is used all over the place? How can
you be sure you've gotten every occurrence?" Normally that is

197

a sticky problem. It is even worse when it is not just the name,
but the nature of the data it represents that changes.

With the PWB we could, and did, find every occurrence of a
variable and change its name and nature, without causing the
usual catastrophies. To change the size and structure of the root
segment of our principal data base in 100 independent PL/I pro-
cedures took one evening's worth of work for the authors. We
were up and running the next morning. As we recall, there were
three bugs associated with that change, all due to an oversight on
our part, and they were all found and cleared by the end of the
week. The code to accomplish this is shown in Section 7.3.3.

7.3 Because It's Only Impossible, We'll Give You Until Tomorrow

In any job there are those aspects which can best be described as
a nuisance. And yet they take up time and effort and must be
dealt with. Sometimes, they are extremely difficult to do, other
times just plain tedious. It was pleasantly surprising to find that
the Workbench could relieve the tedium and ease the difficulties.

7.3.1 How Many Statements in CDS? Programmers will never
understand the fascination that the managers of software projects
have with "statements of code." Normally when faced with the
request for a count, programmers cringe, as did we. But when
pressured we discovered that it was not all that bad. We found
there were already programs for extracting lines containing par-
ticular characters (grep) and counting lines (wc) and we could
pipe the output of one into the other. We built a shell procedure
that looked at all of our code and counted semi-colons, the state-
ment delimiter in PL/I. Thus the Workbench reduced a tedious
job to a trivial one.

7.3.2 Where Did That Extra Character Come From? In any job, no
matter how hard you try to avoid it, something that you did not
anticipate takes almost as much time as planned activities. In
CDS, the terminal we selected provided the "diversion." Simply
stated, the relationships between the cassette tape drive and the
data line to the computer were not as advertised. Characters
which were recorded on the tape would not get to the computer.
Characters which were not on the tape would be transmitted.
Since these were non-graphic and control characters, we had
some difficulty isolating the problem.

But UNIX came to our rescue. By turning off the special
meaning that characters had to UNIX, that is by setting the input
processor to "raw" mode which is within the user's power, we
were able to record exactly what the terminal sent down the line
in a file. The od program, octal dump, was then used to see
exactly what was present. Through this technique we were able
to determine the specific terminal deficiencies that were causing
our problems. We then provided the manufacturer the
specification for the correction which we required. I

This discussion brings up an important point. We have used
several brands of printing and CRT terminals. In each case we
could tailor the character set and response times from UNIX so
that the terminal could keep up. If the terminal is fast, as in the
CRT types, UNIX can be made faster to save time. It should be
understood that we are not talking about changes to system
code; we mean that the user enters a simple "set teletype" com-
mand (stty) to provide the features required.

7.3.3 Change the World. We talked earlier about finding and
making massive changes reliably. That process is not trivial. It
requires a thorough understanding of what needs to be done.
However, given that understanding, PWB provides the tools to
reliably search out and change what is needed. The keystone of
those tools is the ability to create files of commands to drive the

h The final result of the investigation was that line-feed characters recorded
on the tape cassette did not get sent to the computer and every block from
the tape that was transmitted terminated with two carriage-return
characters. IMS teleprocessing required the line-feed character and could
not tolerate the extra unwanted carriage-returns.

text editor. Moreover, it is a simple matter to make the files
dynamic, changing according to need, All of this is done at the
command language level, and is readily learned if one is willing
to spend the time to read the programmer's manual and experi-
ment a little.

For example, the need came up recently to change all
occurrences of the character string "%M%" to the name ot" the
file in which that string was found. There were ;130 files spread
around nine directories. The problem was to create the com-
mands to get the file out of sccs, edit it, and delta the result back
in. The following was the heart of the solution.

i f ! { g e t - e $ 1 } exit
gath - s III=$1 - ; delta $1 " -ychange %M% to proc name"
- $ e d llI.a > /dev/ t ty ; exit 0
- $ f
- $g/%M%/s//III/gp
-$w
-$q

What it does is:

• When called with the file name as argument ($1), does a get
of the file for editing (- e) and if that fails, exits.

• Gath establishes the string " I I I " as the file name and reads
the lines that follow (-) .

• The ° ' -$ ' ' lines are read by gath and " I I I " is replaced with
the file name. The resultant lines are given to the shell (sh)
and thus the ed command performs the "f" , "g", "w", and
"q" commands which edit the file.

• The delta is made on the file with the given history.

A driver already existed for finding all files in the needed direc-
tories. It took about a half hour to develop and test the above
code and about 50 minutes during off-hours for the PWB to per-
form the actual work. We've kept the skeleton around, since
this type of thing comes up about once every other month.

7.3.4 Compile the World. In send, the keyword capability is not
limited just to prompting. The few times it became necessary to
compile everything we had we would satisfy the keywords in
advance, using files of definitions or shell procedures, and then
use the same JCL files as we did every day to do the work. The
result was 100% consistency with day-to-day practice.

rm - f / u 1/cds/xrefi
: loop
if S ix = x goto wrapup
chd i r /u l / cds /$1
ge t . - r 3 - s
grep ?[0-z]* > > /u l /cds /xref i
rm - f ? [0-zl*
shift
goto loop
: wrapup
chd i r /u l / cds / r3 / comcode
grep * > > /u l /cds/xref i
chd i r /u l / cds / r3 / en t ry
grep * > > /u l /cds/xref i
ed - / u l / c d s / x r e f i

1,$s / : / /
W

q
reform +16 +8 < /u l /cds/xref i I sort +1 > /u l /cds /xrefs
r m / u l / c d s / x r e f i
mail jw
xref completed

Fil~ure 6. Shell Procedure for Cross-Referencing Comcode

Z3.5 C;'oss-R¢:/~,rence the World. The Programmer's Workbench
gave us the tools that allowed us to build a shell procedure to
find all occurrences of the "tilde references" and tell us the

198

program module they occurred in sorted by the order of the
comcode files. Time from conception to tested procedure was
one day. We list it in Figure 6 to show its size. Briefly, it:

• Removes the temporary file xrefi.
• From ": loop" to "goto loop" gets all programs in the direc-

tories specified. All the lines which have in t hem are
put into "xref i" along with the file name.

• From ": wrapup" to "grep * > > /u l / cds /x re f i " does the
same for the "comcode" and " en t r y " directories.

• From "ed" to " re fo rm" produces a formatted, sorted list of all
the references and puts it into "xrefs" .

• Remove the temporary file "xrefi".
• Mail to the login " jw" the message "x re f completed".

It is a bit complicated. But this was created when we were still
novices. A newer version, which produces identical output, is
faster, more robust, and the user does not have to provide the
list of directories to be used.

The "xre f" has proven valuable t ime and t ime again, when a
CDS system concept was changing and we wished to see what
modules were impacted. More importantly, we do not feel it
would have been feasible, with the deve lopment schedule we
had, to build a similar system for use with L I B R A R I A N or any
of the other tools available on the IBM machine. Certainly, it
would have been difficult to do it in one day.

8. DEFICIENCIES

8.1 Education

W h e n the authors first started using the PWB we were told that
our login code would be "cds" and were handed a copy of the
UNIX Programmer ' s Manual. This eight part volume was all the
education that was initially provided. It soon came to be known
as "The Book", a phrase taken from the expression often heard ~n
our office, "I t ' s in The Book." Truly all the information required
to properly use the system was in the book but in an incredibly
terse format in tended for reference only. The entire writeup on
ed consists of four pages. A part of the problem is that in almost
any software project, PWB included, the paperwork comes after
getting the product out the door.

Recently the user communi ty has expanded to such an extent
that the PWB developers do not have enough t ime to answer all
the user 's questions individually. This has led to a series of use-
ful tutorials, memoranda, and classes.

8.2 File System Management

As we have seen in our example, use of the full path name of a
file aids in adding robustness to the code. The shell procedure or
tilde reference will always work. However, the amount of space
that exists in a file system such as " / u l " is limited and some-
t imes it becomes necessary to move a project to another file sys-
tem. Currently, there is no support for such a move, and we
were stuck with the job of finding all occurrences of " / u l " and
changing t hem to " /u9" . It was not all that difficult to do, but
the PWB "super -user" (system administrator) could have done it
for us in much less time.

In PWB all storage is on-line. Al though daily backups are
taken, there is no conven ien t way for users to archive old
material. Source code files in SCCS format can have a lot of
built-up fat. Old releases which are not current ly in the field
could be " c r u n c h e d " out from the bot tom if there were some
way to store the historic copy offiine.

tions might be gained if the target provided a t ime sharing sys-
tem, such as IBM's Time Sharing Option (TSO).

But would it be worth while to build a PWB facility under TSO
(or other target operating sys tem)? Certainly the ability to do
on-line compilation and test ing would exist. This approach may
be appropriate at some installations. The general issues involved
in using an independen t PWB are discussed at length in [DOL76AI.

I f CDS were developed on a TSO Workbench , we would be
sharing the target machine with a large batch env i ronmen t and
an on-line IMS env i ronmen t which is already having difficulty
servicing its terminals adequately. With PWB serving a strictly
on-line env i ronment , and the vast majority of its customers
using its editing, RJE, and documenta t ion facilities, we feel it is
doing a bet ter than adequate job. From our particular exper ience
with CDS, the lack of on-line compilation and testing seems
more than compensated for by the other advantages of the PWB.
Also, in our installation (as in others possessing finite resources),
we have often seen content ion for priority of use between batch
and on-line applications, and we welcome PWB'S ability to provide
service without getting involved in such content ion.

9. RELIABILITY

The reliability of the PWB system has been very good. In over
two years of use, only one file of CDS source code was damaged.
It was restored to the previous day's version an hour later.

File space availability is a recurring problem. Unlike other
systems in which users have a fixed allocation, PWB shares the
available space across a group of users. Some users are not as
nice about staying under their "paper" allocations as others;
about every six months a file system runs out of space.

Because our location current ly has four PWB machines , if any
one malfunct ions files can be switched to an alternate machine
giving a degree of "fail-soft." Thus even when a machine is bro-
ken the users have service, though admittedly degraded. Even
so we have found that tire system upt ime is very good. It is gen-
erally available during working hours, a l though at about 2:00 pm
access can be limited due to line congestion. Usually it will stay
up throughout an ent ire weekend without any at tendant.

10. CONCLUSIONS

We have shown a small sample of the experiences of one group
using the PWB to aid in developing a real-life application.

Since we first joined, the Programmer ' s Workbench commun-
ity has grown at an astonishing rate. It is being used by develop-
men t projects and main tenance projects, documenta t ion centers
and typing pools, clerks, typists, programmers, engineers, and
supervisors. It is probably safe to assume that no two use it in
exactly the same way.

But there is little doubt that the availability and capabilities of
the UNIX Programmer 's Workbench are having major impact
wherever it is used. It reliably provides useful comput ing power
to a large and diverse communi ty at a very low cost. Moreover,
this power is available in the form most people want it: a h u m a n
oriented system which is easier to use than not.

This type of software design, where the system does not drive
the user, but rather the user easily drives the system, will, in our
opinion, have great and favorable impact on professional and
public acceptance of future computer technology.

8.3 Independent PWB versus On-Line

For most of the users of PWB, it is an interface to a larger target
machine. This immediately brings up the objection that PWB is
no bet ter than being in a batch envi ronment . There is no gen-
eral capability for on-line compilation and testing. These func-

REFERENCES

All references cited in this paper appear at the end of "An Intro-
duct~on to the Programmer's Workbench," by Dolotta, T. A., and
Mashey, J. R., in these Proceedings.

199

