
The Evolution of a Source Code Control System

Alan L. Glasser

Bell Laboratories
Holmdel, New Jersey 07733

The Source Code Control System (sccs) is a system for controlling changes to files of text (typically,
the source code and documentation of software systems). It is an integral part of a software develop-
ment and maintenance system known as the Programmer's Workbench (PWB).

Sccs has itself undergone considerable change. There have been nine major versions of sccs. This
paper describes the facilities provided by sccs, and the design changes that were made to sccs in order
to provide a useful and flexible environment in which to conduct the programming process.

1. INTRODUCTION

The Source Code Control System (sccs) is a system for controlling
changes to files of text (typically, the source code and documenta-
tion of software systems). It provides facilities for storing, updat-
ing, and retrieving all versions of a file of text; for controlling
updating privileges; for identifying the version of a retrieved file;
and for recording who made each change, when and where it was
made, and why.

SCcs, a system for controlling change, has itself undergone consid-
erable change. Nine distinct versions of sccs have existed. The
first five versions were implemented for IBM's OS, and the last four
versions were implemented as a collection of programs that run
under the FWB/UNIX" time-sharing system [8]. This paper is pri-
marily concerned with the PWB versions of sccs.

The PWB [4, 5] differs from most program development facilities in
that, for many projects, program development and execution of the
resulting programs take place on two different machines: one that is
best for program development (PWB), and one that is best for the
execution of the production system (called a "target"). The PWB
provides a single, uniform programming environment, even across
projects that run on different target systems.

SCCS is used extensively within Bell Laboratories. For example, at
one installation more than 3 million lines of source code are con-
trolled with sccs. These 3 million lines represent 5000 files and the
work of approximately 500 programmers. Additionally, sccs is
used at many installations outside the Bell System.

Projects that use sccs have more than one customer, and are usu-
ally in the process of enhancing their software products. Also,
these projects usually support at least two versions of the product,
the old reliable version and the new, enhanced but possibly unreli-
able version. When a customer discovers a bug in the old version,
the project can't merely deliver the new version of the product.
The bug must be fixed for all supported versions. The only accept-
able method of correcting a bug is to change the source code and
re-compile. Modifying an executable form of ~ module is not
allowed. Sccs attempts to solve many of the problems that result
from in working in the above described way. This paper describes
the facilities provided by sccs, and the source code maintenance
problems that we have discovered and solved with sccs.

* UNIX is a Trademark of Bell Laboratories.

2. FACILITIES

2.1 Basic Use

Examples of sccs usage are given in [3, 5, 7]. The following is a
typical example of use:

A programmer is informed that program monthlyrpt has a
bug. A copy of the program is requested from sccs by
executing the command:

get - -e s.monthlyrpt

The --e indicates that the person intends to edit the
retrieved version, and add the change (called a delta) to
the sccs master copy. The programmer then proceeds to
edit the retrieved file, compile it, and test it. The edit--
compile--test cycle is usually repeated a number of times.
When the bug is fixed, the change is added to the sccs
master copy by executing the command:

delta s.monthlyrpt

This command adds the change to the sccs master copy of
the file. The change is identified by the name of the pro-
grammer, the current date and time, and a programmer-
supplied reason for the change.

At this point the programmer would take the necessary
steps to deliver the fixed program to the appropriate custo-
mers.

The additional effort the programmer must spend in order to use
sccs is quite small, It should be noted that the above example is
indeed typical of the use of sccs.

2.2 Protection

SCCS relies on the capabilities of the PWB/UNIX time-sharing system
for most of the protection mechanisms needed to prevent unau-
thorized changes to sccs files. Sccs provides protection mechan-
isms for controlling which people may add deltas to a module, and
what releases of a module may be changed. In addition to pro-
grammers who change source code, sccs allows for an administrator
(sometimes called a program librarian) who is responsible for con-
trolling the updating privileges of each module for a given project.
The degree o f control employed is regulated by the administrator.
The administrator has an admin command with which to perform
these tasks. The operating system provides the protection neces-
sary to prevent anyone but the administrator from changing this
information.

122

2.3 Change History

A prt command is used to format and print all or part(s) of an sccs
file. This command is used most often to print the change-history
of a module. The following is a typical, prt generated, change-
history:

s.dodelt.c:

1.9 77/10/10 14:08:46 leb 9 8 00004/00001/00126
file format checks

1.8 77/06/13 13:55:06 leb 8 7 00001/00001/00126
Changed s.h to defines.h in "includes"

1.7 77/03/18 14:44:22 alg 7 6 00001/00001/00126
sidp = -- 0 means don't do any rmchg stuff

1.6 77/03/17 11:22:08 leb 6 5 00003/00001/00124
indicator for first time escape to escdodelt

1.5 77/03/17 10:29:02 leb 5 4 00009/00002/00116
call escdodelt only when processing wanted delta

1.4 77/03/11 14:23:56 leb 4 3 00002/00000/00116
still more

1.3 77/03/09 15:20:24 alg 3 2 00001/00000/00115
more of the same

1.2 77/03/09 14:23:02 alg 2 1 00012/00002/00103
chged to accommodate rmdel and chghist

1.1 77/02/25 15:26:28 leb 1 0 00105/00000/00000

The first line of each entry contains the change level, date and time
of the change, login name of the programmer who made the delta,
serial number of this delta and its predecessor, and the number of
lines inserted, deleted, and left unchanged by this delta. Following
this is the programmer-supplied reason for the change. For many
users, this automatic bookkeeping function is the most important
feature of sees.

2.4 Change Regeneration

The sccsdiffcommand prints the differences between any two ver-
sions of an sccs file. This program allows one to determine exactly
what a particular change is, and where in the file that change was
made. This capability is most useful when one must fix another
person's change and that person is unavailable for consultation.

2.5 Use with Other PWB Tools

The UNIX pipe [8] is a facility to connect the output of one program
to the input of another.* As most UNIX programs fit easily into
multi-process pipelines [6], designing sCCS commands to be pipe-
line elements provides SCCS users with many powerful source code
manipulation tools. Some examples follow:

2.5.1 SCCS Usage Statistics. The names of sccs files are normally
passed as arguments to an sccs command. Alternatively, one may
supply the names on the standard input. With redirection from
files or pipes, one may use a prepared list of names in a file, or use
a program to generate a list dynamically. The following command
line will print the total number of lines of sccs controlled text on a
given PWB machine:

find / --print] get -- --p [wc

The f ind command prints the names of all the files on the system.
The get command reads the standard input for its file name argu-
ments, and writes the generated text on the standard output. The
"1" symbol is the command language syntax for a pipe [8]. Finally,
the wc program counts the lines in a file.

2.5.2 Report Generation, The sccs prt command can print the
change-history of a group of modules. If one wants this informa-
tion in reverse chronological order (e.g., a report of all changes
made in the past week) instead of module order, one need only
connect prt to the sort program with a pipe.

2.5.3 Inter/iTce to Targets. The send command is used by program-
mers to submit batch jobs to a target machine. In addition to the
RJE related functions it performs (e.g., ASCII to EBCDIC transla-
tion), send is a simple macroprocessor with nested file inclusion and
keyword substitution. In addition to normal file inclusion, the send
command can also include "virtual files" (i.e., the standard output
of a command) by creating a pipe between itself and the command
in question. The following send command input shows bow one
can include a source module in a job stream without first explicitly
geting the module:

//compprog job ...
/ /plcomp exec plixc
//sysin dd *
"[get - -p s.module
/*

The " - ! " tells send to treat the rest of the line as a command,
create a pipe, pass the line to the command interpreter, and replace
the line with the standard output of the command.

These three examples are representative of the ways in which sccs
can be used with other PWB tools; [3] contains more examples.
Instead of one program that contains all the features used in the
above examples, sccs is a group of simple programs that can easily
be connected to other simple programs when elaborate results are
needed.

2.6 Source Code Change Statistics

Although the primary use of SCCS is to control changes to source
code, the last few versions of sccs have had a number of features
added that allow one to gather source code change statistics in a
simple manner. For example, the recording of the number of lines
inserted, deleted, and left unchanged for each delta is a feature that
exists only in the current version of sccs. Histograms of the
number of changes versus the number of modules having that
many changes, the sizes (in lines) of modules across a period of
time, and the frequency of change for a given module or a histo-
gram for a set of modules can all be easily generated.

The following table is a histogram of the number of programmers
versus the number of files which have had deltas made by exactly
that many different programmers. The data was extracted from a
project of 65 programmers. The sample examined contains 1700
files representing 500,000 lines of source code.

Number of Number of Modules With

Programmers Deltas by Exactly

(X) X Different Programmers

1 441
2 759
3 372
4 89
5 29
6 7

* The command interpreter provides the programs that it runs with I /O channels
to the user 's terminal; these channels are called the standard input, and standard
output [8]. Additionally, the command interpreter can redirect these channels
either.to or from files or pipes.

123

The next table is a histogram of the number of deltas versus the
number of files containing exactly that many deltas. (For the same
project as above.)

Number of l'~umber of
Deltas Modules Containing
(X) Exactly X Deltas

1 258
2 57
3 470
4 419
5 75
6 56
7 41
8 42
9 32

10 17
11 19
12 21
13 10
14 10
15 18
16 12
17 17
1S 9
19 8
20 4
21 5
22 8
23 6
24 8
25 3
26 4
27 9
28 2
29 3

Number of Number of
Deltas Modules Containing

(X) Exactly X Deltas
30 7
31 5
32 2
33 1
34 1
35 1
36 2
37 2
38 1
39 3
40 3
41 4
42 1
43 1
44 1
45 1
47 2
48 1
49 3
50 2
52 1
54 1
56 1
58 1
59 1
68 1
76 3

162 1

Finally, the last two tables show the changes made to 7 modules of
sccs itself across a 2~/2 month period.

Total Lines of Code
Date 3/1 3/15 4/1 4/15 5/1 5/13
Mod A 49 53 52 52 52 52
Mod B 481 489 492 492 492 740
Mod C 338 338 338 338 341 356
Mod D 119 120 120 120 120 120
Mod E 611 615 631 618 618 618
Mod F 496 497 502 502 502 502
M o d G 504 504 509 513 513 513

Totals 2598 2616 2644 2635 2638 2901

Total Number of Deltas

Date 3/1 3/15 4/1 4/15 5/1 5/13
Mod A 1 2 4 4 4 4
Mod B 2 3 4 4 4 7
Mod C 3 3 5 5 6 7
Mod D 2 3 3 3 3 3
Mod E 2 5 9 10 10 10
Mod F 2 4 7 8 8 9
Mod G 3 5 7 9 10 10
Totals 15 25 39 43 45 50

All of the above tables were generated simply and automatically.
No human recording of program change data was necessary. The
source code change statistics that are readily available from sCcs are
often difficult to obtain [1]. In fact, the lack of such data leads to
much ad hoc design of support systems, and makes rigid analyses
of the programming process difficult.

2.7 Summary

Many more facilities are available [3]. The facilities that have been
described are among those that have led to the high level of success

that sccs has achieved with both programmers and managers. The
next section examines a number of design issues that have been
addressed by the various versions of sccs.

3. ISSUES IN SOURCE CODE MANAGEMENT

Understanding the dynamics of program change has been an ongo-
ing learning experience. Our goal has always been to make the
programmer's job easier, while using storage space efficiently. In
the course of implementing the nine different releases of sees, we
have introduced (and removed) various features in attempting to
meet the above goal.

3.1 Change Propagation

When a project agrees to support and maintain one version of a
software system while it develops the next version of that system,
one encounters the following problem in source code maintenance:
when a bug is discovered in the customer's version of the program,
it is desirable to fix it once and have all of the subsequent versions
include the fix, We assume that, as is often the case, the fix for
the next version" is identical to the fix for the customer's version.

3.1.1 Propagation of Deltas.

In the original version of sccs, deltas were identified by a release
number and a delta number within that release (e.g., 2.5). When a
change was made in a given release all deltas in all lower numbered
releases were applied. (See [7] for details on the delta storage and
accessing algorithm used.) For example, if the time order of three
deltas is 1.1, 2.1, 1.2, then whenever release 2 is accessed delta 1.2
is included. This effect is called delta propagation. Clearly, this is
not always what is desired, e.g., suppose delta 1.2 changes a section
of the file that was completely re-written for release 2. The result-
ing release 2 version in this case would usually necessitate an addi-
tional delta (2.2) to undo any unwanted effects of delta 1.2. How-
ever, when delta 1.2 fixes a hitherto latent bug in an otherwise
unchanged section of code, the delta propagation feature allows the
bug to be fixed once and avoids the all too common situation where
the same bug reappears with each new release of the program or
else in alternate releases (fixed in release 1, reappears in release 2,
and finally fixed in release 3). The usefulness of the delta propaga-
tion feature thus depends on which of the two above situations
occur more often.

A problem of propagation was that the programmers would be
unaware of any new release 1 deltas, and then proceed to access 2.1
and discover it to be different from an older (pre-l.2) 2.1. To
solve this problem we added a cutoffdate feature. This allowed an
additional criterion for delta application; namely, it permitted delta
application only if the delta was made before a specified date. It is
interesting to note that the cutoff date feature, which is still avail-
able, has had almost no use.

3.1.2 Optional Deltas.

Finding unrestricted propagation harmful, an optional delta capabil-
ity was added to allow the creation of non-propagating deltas in lower
numbered releases. There wgre 26 sets of optional deltas, each
identified by a single alphabetic character. An optional delta could
belong to only one of the 26 sets. When accessing a module a sin-
gle option letter could be specified. Deltas were applied as before,
but all optional deltas not in the set specified were excluded. The
original intent of optional deltas was to help solve the problem of
making "temporary fixes" without causing the temporary fix code
be applied in higher numbered releases. Of course, no more than
26 temporary fixes could be made to a single module. Additionally,
the bookkeeping of knowing what option letter corresponded to
which release was, unfortunately, left to the programmer. An
interesting observation has been made on the use of optional deltas:
programmers attempted to use optional deltas as a "conditional
compilation" mechanism. Unfortunately, due to certain implemen-
tation details, optional deltas could not be used in this way. To
save the programmers from unnecessary confusion and frustration,
the optional delta feature was removed.

124

3.1.3 Non-propagation o / Deltas.

After some experience with delta propagation, it was decided that
propagation was bad and should be eliminated. Eliminat ing propa-
gation solves the problem of deltas in lower numbered releases dis-
turbing higher numbered releases. It re- introduced the problem of
having to fix the same bug in the next version o f the program. The
programmer mus t make more than one delta even if the original
(and fixed) code is identical in all releases. Our experience, thus
far, has led us to believe that not propagating deltas is better than
propagating them. A m e c h a n i s m is provided to force the applica-
tion of an arbitrary delta and a complementa ry m e c h a n i s m is pro-
vided to force a delta not to be applied. This m e c h a n i s m is used to
explic#ly apply a non-propagating delta in higher releases.

3.1.4 Eliminating Bug Recurrence.

A message was produced whenever the p rogrammer accessed a ver-
sion of a module and any deltas in lower numbered releases were
not applied. This mechan i sm helped keep the " b u g " f rom being
forgotten, as often occurs in many source main tenance sys tems.
The message could be turned off once one became certain that it
would never be necessary to be reminded of the bug in the future.
Again, the p rogrammer a s sumed the bookkeeping job of tracking
which vers ions had been accounted for. Unfor tunate ly , the mes-
sages proved to be very annoying, and were turned off prematurely.
This feature has also been removed. Instead, an audit capability
was built to generate an exception report of deltas unaccounted for.
The audit can be run as frequently as is necessary (e.g., before
delivery of a new release); it solves the problem of forgetting a bug
and doesn ' t disturb the programmer.

3.2 Delta Trees

It is convenient to view the deltas of an s c c s file as the nodes of a
tree, where the root of the tree is the initial delta. In all previous
versions of s c c s , the only nodes that had more than one successor
were those where one successor had a higher release number .
Also, no delta had more than two successors. In the discussion
above, delta 1.1 has two successors: 2.1 and 1.2. The current ver-
sion of s c c s is notably different f rom its predecessors in that it
allows the deltas to form an arbitrary tree. Temporary fixes are
now added as a new " b r a n c h " to the delta tree, instead of as
optional deltas. This feature is most useful in a si tuation where
work on different bugs in the same version mus t proceed indepen-
dently and in paral lel--a si tuation that is not infrequent when many
different cus tomers are supported.

3.3 Identification

Identifying the version of a source file and identifying the version
of a source file used to construct a load module are both important
capabilities of a source code control system. Wi thout these capabil-
ities it is impossible to de termine the version o f a source module
used to construct a failing load module. SCCS provides these capa-
bilities in a simple, yet powerful, manner . Load modules are
identified by placing identifying information in the source code so
that it will appear in the load module . The identification informa-
tion remains with the load module forever. Copying the load
module , r enaming it, or archiving it to tape have no effect on the
identification information. For many sys tems , the identification
information also appears in a m e m o r y d u m p of the program,
Source modules are identified by embedded ident(/ication keywords.
An identification keyword is an upper-case letter enclosed by per-
cent (%) signs. The get c o m m a n d will replace identification key-
woi'ds by appropriate values wherever they occur in the generated
text, For example , "%1%" is replaced by the change level, and
" % M % " is replaced by the module name. Thus , execut ing get on
an SCCS file that contains the line:

DCL ID CHAR(100) VAR INIT('%M% %1%');
gives, for example , the following:

DCL ID CHAR(100) VAR I N I T (' M O D N A M E 2.3");

The " % W % " identification keyword is replaced by the string
" @ (#) " , followed by the module name, a tab, and the change

level. The what c o m m a n d is available to search files for the string
" @ (#) " , and print what follows that string on the s tandard output .
The " @ (#) " string was chosen to be unlikely to appear in a load
module by chance. This c o m m a n d thus au tomates the extraction of
identification information.

3.4 Efficiency Considerations

Software sys tem designers are always concerned with efficiency, and
those who design source code control sys tems are no exception.
However, two efficiency considerat ions in the implementa t ion o f
early vers ions o f s c c s later proved to be o f dubious value.

Most PWB/UNIX t ime-shar ing sys tem files are text files. However,
the first PW8 implementa t ion of SCCS used non- text (i.e., binary)
files. This allowed change level number s , dates, and other various
numerical data to be represented as binary number s , instead of as
ASCII digit strings. The inability to use the many PWB text f i le
manipulat ion tools proved to be far more costly than the convers ion
t ime saved.

When geting an s c c s file with the intent of making a delta, the ,get
c o m m a n d creates an auxiliary file that contains the change level
requested, the change level of the delta to be made, and the Iogin
name of the p rogrammer who made the delta. Again, in the first
PWB implementa t ion of SCCS this file contained binary data. The
conten ts o f the file were a copy of a complex data s t ructure com-
puted by get. Delta. which also needed this data s t ructure, d idn ' t
have to re -compute it. However, this made it quite difficult to
examine these files (to de termine who is making the delta, and at
what change level), and even more difficult for an adminis t ra tor to
change this information.

The current version o f s c c s uses text files for both auxiliary files
and s c c s files. These changes have increased the utility of s c c s
with no noticeable degradation of performance.

4. CONCLUDING REMARKS

The current version of sCCS has been operational since early 1977.
We are still learning more about the nature o f program change.
However, no new major vers ions are planned; we feel that the
current version o f s c c s is flexible enough for most situations.

Program main tenance is expens ive [2], It is also, at best, tedious
without a tool like s cc s . Moreover , there is a severe lack of litera-
ture dealing with source code maintenance . It is hoped that this
description of a successful and widely accepted source code control
sys tem improves an unfor tuna te situation.

5. ACKNOWLEDGEMENTS

The PwB concept was first suggested by E. L. Ivie [5]. The original
design of s c c s is due to M. J. Rochkind. The au thor worked with
L. E. Bonanni and M. J. Rochkind on the design and implementa-
tion of PWB SCCS.

6. REFERENCES

[1] Belady, L. A., and Lehman, M. M. The Characteristics of Large Systems.
Proc. Cot?[~ on Research Directions in SoJ~ware Technology. Oct. 10-12, 1977.

[2] Boehm, B. A. Software and its impact: a quantitative assessment. Datamation
19. 3 (May 1973), 48-59.

[3] Bonanni, L. E., and Glasser, A. L. SCCS/PWB User's Manual. Bell Labora-
tories, November 1977.

[4l DoIotta, T. A., and Mashey J. R. An Introduction to the Programmer's
Workbench. Proc. Second Int. Coq/~ on Software Engineering. Oct. 13-15, 1976.

[5] lvie, E. L. The Programmer's Workbench--A Machine for Software
Development. Comm. ACM 20, 10 (October 1977), 746-53.

[6] Kernighan, B. W., and Plaugher, P. J. Software Tools. Proc. First National
Cot![brend'e on Sql~ware Engineering. Sept. 11-12, 1975.

[7] Rochkind, M. J. The Source Code Control System. IEEE Trans. on SQllware
Engmeer#tg SE-I. 4 (Dec. 1975), 364-70.

[8] Ritchie, D. M., and Thompson, K. The UNIX Time-Sharing System. Comm.
ACM 17, 7 (July 1974), 364-75.

125

