UNIX Remote Job Entry Administrative Guide
M. J. Fitton

Alcatel-Lucent Bell Laboratories
Piscataway, New Jersey 08854

1. INTRODUCTION
1.1 Purpose

This document is intended to augment the existing body of documentation on the design and operation of
UNIX* IBM RJEL. The reader should be familiar wittie(8), and theUNIX Remote Job Entry User's
Guide, April 1, 1980. There will be assumptions made concerning allocation of responsibilities between
UNIX andIBM operations, hardware configuration, etc. Although these assumptions may not fully apply to
your location, they should not interfere with the intent of this document.

The major topics discussed in this paper are as follows:
o SETTING UP- hardware requirements aRdEgeneration on thiBM andUNIX systems.

« DIRECTORY STRUCTURES- the controlling RJE directory structure and a typic&JE subsystem
directory structure.

« RJE PROGRAMS- programs that make up &JEsubsystem.
« UTILITY PROGRAMS - utility programs that are available for debugging or tracing.

» RJE ACCOUNTING- the accounting of jobs done BBJE and some methods for using this accounting
data.

» TROUBLE SHOOTING- error recovery and procedures for identifying and fix@agproblems.
1.2 Facilities

Discussions will focus on a hypotheticRUE connection between BNIX system,pwba, and aniBM
370/168, referred to aB. We also assume thatwvbais connected to arBM 370/158, referred to aS.
The UNIX machine emulates dBM System/360 remote multi-leaving work station. For more information
on the multi-leaving protocol, see Appendix Ba%/VS MVS JES2 Lodi8Y24-6000-1).

2. SETTING UP
2.1 Hardware
To useRJEoN aUNIX system the following hardware is needed (one per remote line):

« KMC11-B Microprocessor used to drive thRJEline

o DMC11-DA or DMC11-FA line unit - the DMC11-DA interfaces with Bell 208 and 209 synchronous
modems or equivalent. Speeds of up to 19,200 bits per second can be usdoMdteFA interfaces
with Bell 500 A LI/5 synchronous modems or equivalent. Speeds of up to 250,000 bits per second can
be used.

On theDMC11 line unit, the Cyclic Redundancy Ched&RC) switch should beff. Turning the switch off
inhibits automatic transmission @RC bytes. The line unit should hold the line at logical zero when
inactive. For a more detailed description of the above hardware Tegminals and Communications
Handbook Digital Equipment Corporation, 1979.

* UNIX is a Trademark of Bell Laboratories.

1. In this paperRJErefers to theUNIX facilities provided byrje(8) andnot to the Remote Job Entry feature 18M’s HASP or JES2
subsystems.

2.2 IBM Generation

The following applies to the ho®M system. The remote line to tkiNIX machine should be described as
a System/360 remote work station. The following parameters must be initializedwstdgree with their
counterparts on theNIX machine:

« Number of printersNUMPR) - the number of logical printers (up to 7)
« Number of punchesN\UMPU) - the number of logical punches (up to 7)
« Number of readersNUMRD) - the number of logical readers (up to 7)
The JES2parameters for our hypothetical connectioiBtd systemB are as follows:

RMT5 S/360,LINE=5,CONSOLE,MULTI, TRANSP,NUMPR=5,
NUMPU=1,NUMRD=5,ROUTECDE=5

R5.PR1 PRWIDTH=132

R5.PR2 PRWIDTH=132

R5.PR3 PRWIDTH=132

R5.PR4 PRWIDTH=132

R5.PR5 PRWIDTH=132

R5.PU1 NOSUSPND

R5.RD1 PRIOINC=0,PRIOLIM=14

R5.RD2 PRIOINC=0,PRIOLIM=14

R5.RD3 PRIOINC=0,PRIOLIM=14

R5.RD4 PRIOINC=0,PRIOLIM=14

R5.RD5 PRIOINC=0,PRIOLIM=14

Systempwbais referenced by line 5. (NE=5), remote 5RMT5). It is defined as having a console, for the
riestat(1) command, five printers, one punch, and five readers. Although you may have up to seven
printers or punches, the total number of printers and punches may not exceed eight. The line is described as
a transparentTRANSP), multi-leaving MULTI) line. The remaining information describes attributes
associated with the printers, punches and readers.

Normally, separator pages are transmitted watt print files. UNIX RJE does not remove separator pages.
To prevent transmission of separator pages on printer 1 of the previous example, its attributes would be:

R5.PR1 PRWIDTH=132,NOSEP

NOSEP should be included for all printers when separator pages are not desirediBMaststems can

also be told via a console command to cancel transmission of separator pages on printers. This can be done
from theIBM system console, or from the remat@lIX machine viarjestat. For example, the following
JES2command would cancel separator page transmission on printer 1:

$TR5.PR1,S=N
2.3 UNIX Generation

If the RIJE remote dialing facility is to be used, the administrator must make sure that the definition for
RJECUin the file /usr/include/rje.h is the device to be used for remote dialingJECUis defined to be
/dev/dn2 when distributed. To compile and instatJE the normalmakel) procedures are used (see
Setting upUNIX). Once anRJE subsystem has been installed, the remote line must be described in the
configuration file/usr/rje/lines. This file as it exists on our hypothetical systewbais as follows:

B pwba /usr/riel rjel vpmO0:5:1 1200512y
C pwba /usr/rje2 rje2 vpm1:1:1 1200512

lusr/rjellines is accessed by all components)RifE Each line of the table (maximum of 8) definesRIE
connection. Its seven columns may be labdledt, system directory, prefix, device peripherals, and
parameters These columns are described as follows:

» host- ThelBM System name, e.dA, B, C. This string can be up to 5 characters long.

» system- TheUNIX System name (semamél)).
« directory - the directory name of the serviciRgEsubsystem (e.glusr/rje2).
« prefix - the string prepended to most files and programs iditkeetory (i.e.,rje2).

« device- the name of the controlling Virtual Protocol MachinerM) device, with/dev/ excised. In
order to specify &/PM device, allVPM software must be installed, and the proper special files must be
made (seepm(4) andmknod1M)).

« peripherals - information on the logical devices (readers, printers, punches) us@&lbyThere are
three subfields. Each subfield is separated Hyahd is described as follows:

1. Number of logical readers.
2. Number of logical printers.
3. Number of logical punches.

Note: the number of peripherals specified for RAE subsystemmust agree with the number of
peripherals that have been described on the remote machine for that line.

» parameters - this field contains information on the type of connection to make. Each subfield is
separated by . Any or all fields may be omitted; however, the fields are positional. All but trailing
delimiters must be present. For example, in

1200512::9-555-1212
subfields 3 and 4 are missing, but the delimiters are present. Each subfield is defined as follows:

1. space- this subfield specifies the amount of spaggif blocks thatRJEtries to maintain on file
systems it touches. The default is 0 blockSend1) will not submit jobs andjeinit issues a
warning when less than 1SHhlocks are availablesjerecv stops accepting output from the host
when the capacity falls t8 blocks;RIEbecomes dormant, until conditions improve. If the space
on the file system specified by the user on the “usr=" card would be depleted to a point Below
the file will be put in thejob subdirectory of the connection’s home directory rather than in the
place that the user requested.

2. size- this subfield specifies the size in blocks of the largest file that can be accepted from the
host without truncation taking place. The default is no truncation. Notelk&t has a default
one Mega-byte file size limit.

3. badjobs - this subfield specifies what to do with undeliverable returning jobs. If an output file is
undeliverable for any reason other than file system space limitations (e.g., missing or invalid
“usr=" card) and this subfield contains the lettgr the output will be retained in thgb
subdirectory of the home directory, and logja is notified viamail(1). If this subfield has any
other value, undeliverable output will be discarded. The defaunlt is

4. console- this subfield specifies the status of the interactive status terminal for this line. If the
subfield contains am, the status console facilities ofestat will be inhibited. In all cases, the
normal non-interactive uses péstatwill continue to function. The default is

5. dial-up - this subfield contains a telephone number to be used to call a host machine. The
telephone number may contain the digits O through 9, and the chara€ctemwhich denotes a
pause. If the telephone number is not present, no dialing is attempted, and a leased line is
assumed.

When multiple readers have been specified, jobs that are submitted for transmisi@bnhace assigned to

the reader with the fewest cards on it. Each reader gets an equal amount of service. This prevents smaller
jobs from having to wait for a previously submitted large job to be transmitted. When multiple printers or
punches have been specified, returning jobs get assigned to free printers (or punches) allowing smaller
output files to bypass large output files.

Deciding how many peripherals to specify depends on the use oR#Egubsystem. If aRJIE subsystem
is heavily used for off-line printing (i.e., output does not return to X machine), the administrator
would want to specify multiple readers, but would not have a need for multiple printers or punches.

3. DIRECTORY STRUCTURES

3.1 Controlling Directory

The controlling directory used bJEis /usr/rje. This directory containRJE programs for use by separate
RJEsubsystems (e.grjel, rie2, rje3), and the shell queuer’s directory. Md®IE programs existing here
have been compiled such that eaJEt subsystem shares the text of these programs. A snapshot of this
directory on our hypothetical machine is as follows:

- TWXT-Xr-X 2 rje rje 4068 Mar 4 10:42 cvt
SIW-r--1-- 1 rje rje 42 Apr 10 09:52 lines

- TWXT-Xr-X 2 rje rje 15096 Apr 10 13:01 rjedisp
- TWXT-Xr-X 2 rje rje 2328 Mar 4 10:21 rjehalt
- TWXT-Xr-X 2 rje rje 10396 Apr 15 10:07 rjeinit
Sr-X------ 2 rje rje 785 Apr 8 09:00 rjeload
-TWST-Xr-X 2 rje rje 5040 Mar 27 09:28 rjeqer
- TWXT-Xr-X 2 rje rje 4072 Apr 1 15:40 rjerecv
- TWXT-Xr-X 2 rje rje 3888 Mar 27 09:35 rjexmit
-TWST-Xr-X 1 root rje 2696 Mar 27 14:42 shger

- TWXT-Xr-X 2 rje rje 5920 Apr 2 15:47 snoop
drwxr-xr-x 2 rje rje 80 Mar 25 13:26 sque

RJE subsystems are generated in their own directory by linking the program names in this directory to the
appropriate names in the subsystem directory. The programs are described in Section 4. lifies fie

the configuration file used by aRJE subsystems. The directosgueis used by the Shell queueshge).

This directory contains:

SIW-r--r-- 1 rje rje
SIW-r--r-- 1 rje rje

0O Feb 14 14:04 errors
0O Feb 14 14:04 log

Whenshgerhas work to do, the filekbg anderrors will be of non-zero length, and temporary filamp)
will also appear here. For a complete descriptioshgierand these files, see Section 4.8.

3.2 Subsystem Directory

The RJE subsystem described in this section maintains the connection bepmdsandIBM B, and will
be referred to agel. The first line of/usr/rje/lines (see Section 2.3) describgel. As noted in this file,
rielruns in the directorjusr/rjel. A snapshot of this directory is as follows:

SIW-r--r-- 1 rje rje 4990 Apr 15 08:30 acctlog
- TWXT-Xr-X 2 rje rje 4068 Mar 4 10:42 cvt
SIW-r--r-- 1 rje rje 0 Apr 15 04:02 errlog

d rwx rwx rwx 2 rje rje 192 Apr 10 09:51 job
SIW-r--r-- 1 rje rje 194 Apr 15 08:11 joblog
SIW-r--r-- 1 rje rje 0 Apr 15 08:11 resp

- TWXT-Xr-X 2 rje rje 15096 Apr 10 13:01 rjeldisp
- TWXT-Xr-X 2 rje rje 2328 Mar 4 10:21 rjelhalt
- TWXT-Xr-X 2 rje rje 10396 Apr 15 10:07 rjelinit
Sr-X------ 2 rje rje 785 Apr 8 09:00 rjelload
-TWST-Xr-x 2 rje rje 5040 Mar 27 09:28 rjelqger
- TWXT-Xr-X 2 rje rje 4072 Apr 1 15:40 rjelrecv
- TWXT-Xr-X 2 rje rje 3888 Mar 27 09:35 rjelxmit
drwxr-xr-x 2 rje rje 144 Apr 15 08:30 rpool

- TWXT-Xr-X 2 rje rje 5920 Apr 2 15:47 snoopO

d rwx rwx rwx 2 rje rje 176 Apr 10 13:03 spool
drwxr-xr-x 2 rje rje 224 Apr 10 13:56 squeue
SIW-r--r-- 1 rje rje 0 Apr 15 10:30 stop
SIW-r--r-- 1 rje rje 274 Mar 7 20:25 testjob

The programsrjell], cvt, and snoopOare linked to the corresponding programs/usr/rje, and are
described in detail in Section 4. The remaining files and their uses are as follows:

acctlog - accounting data is stored in this file, if it exists. This file is the responsibility ofRbE
administrator. For a discussion of its uses, see Section 5.

errlog - used byrjelto log errors. It can be useful for debuggifed problems.

joblog - used byrjelger and rjestat to notify rjelxmit that a job (or console request) has been
submitted. It also contains the process-group number ofjéieprocesses. The prograowt can be
used to convert this file to a readable form.

resp - contains console messages received fiBm B. These messages can be responsegdstat,
or IBM responses to submitted jobs (i.e., on reader messages). This file is truncated if it grows to a size
greater than 70,000 bytes.

stop - indicates thatjelhalt has been executed. The existence of this file indicateestat thatrjel
has been halted by the operator.

testjob - a sample job that can be submitted to test ijled subsystem. Originally, the job control
statements may have to be changed to suit igduIsystem.

Whenrjel terminates abnormally, the fildead should appear in this directory. This file contains a short
message indicating whijel is not operating, and is used bjgstatto report the problem. The remaining
directories and their uses are as follows:

job - used to save undeliverable jobs, if the proper parameter has been specitisdrie/lines. The
sample job described above is also delivered to this directory. This directory should be mode 777.

rpool - contains temporary files used to gather output from the remote machine. These files are named
prd(for print output files), angull(for punch output files). Once a complete file has been received,
the file is dispatched in the proper wayrfidisp.

spool - used bysendto store temporary files to be submitted to the remote machine. This directory
must be mode 777.

squeue- used byrjel to store submitted files until they are transmitted. The progrettgeris used
by sendto move the temporary files in tspooldirectory to this directory.

4. RJE PROGRAMS

All programs described below, with the exceptiorrjektat, exist in/usr/rje. These programs are “shared
text” and are linked (excephqgel) to the proper names in each subsystem directory. The names described
below are generic; the programs in tje2 directory would beje2qger, rje2init, etc.

Each availabl&RJE subsystem occupies three process slots. The slots are uggPfanit, the transmitter;
rie?recy, the receiver; andje?disp, the dispatcher. One additional process slot is usedsfager,
regardless of how many subsystems are available.

EachRJEsubsystem tries to be self-sustaining, and logs any errors encountered during normal operation in
its errlog file.

4.1 Rjeger

This program is used bgendto queue files for transmission. When invoked, it performs the following
steps:

1. Moves the temporapnch(5) format file in thespooldirectory to thesqueuedirectory.
2. Writes an entry at the end of the fiddlog containing:

« the name of the file to be transmitted

« the submitter’s user-id

« the number of card images in the file

« the message level for this job

The filejoblog is used to notifyrjexmit of work to be done.

3. Notifies user that file has been queued.

Senddetermines which host system is desired, and invokes the prig®erer by getting theprefix from
thelinesfile (e.g., if sending teBM C from our machinesje2gerwould be invoked).

4.2 Rjeload

This program is used to start @E subsystem. Its prefix determines which subsystem to start (e.g.,
rie2loadstartsrje2). To start theRIJEsubsystems on our machine, the following commands are executed in
/etc/rc when changing tit state 2 (multi-user):

rm -f /usr/rje/sque/log
su rje-c "/usr/rjel/rjelload"
su rje-c "/usr/rje2/rje2load"

The file /usr/rje/sque/log is removed to ensure the correct operationsbfier. When invoked rjeload
performs the following steps:

1. Finds the propeKMC device by using the minor device number of the correspondipig device
(the first two bits).

2. Useskash1) to perform the following:
o reset th&kmC
« load thevPM script (etc/rjeproto)
« start thekMC running
3. Executesje?init to start theje? processes (e.gje2loadexecutesje2init).
4.3 Rjehalt

This program is used to halt aRJE subsystem. To haltje2 on our machine/usr/rje2/rje2halt is
executed. This should be done in #teutdownprocedure for your machine to ensure graceful termination
of RJE Rjehaltwill allow only those users with permission to halt &IE subsystem.Rjehalt uses the

header on the filgoblog to get the process-group of tR@Esubsystem processes. This group is signaled to
terminate. When all processes have terminagetialt sends a “signoff” record to the host machine. This
signoff record is taken from the filignoff (ASCII text), if it exists, otherwise a % signoff” record is sent.

On completionyjehalt creates the filstop in the subsystem directory, that causestatto report thaRJE

to the corresponding host has been stopped by the operator.

4.4 Rjeinit

This program initializes aRJE subsystem. It is used byjeload, and can be used to restart a subsystem if

the VPM script has previously been starteRjeinit should only be executed by usge. Rjeinit fails if

there are less than 100 blocks or 10 inodes free in the file system. It issues a warning if there are less than
1.5X blocks, (where X is the first field in the parameters for that line), or 100 inodes free in the file system.

If rjeinit fails, the reason for the failure is reported, and the diéad is created containing “Init failed”.

This will be reported byrjestat until a subsequentjeinit succeeds.Rjeinit performs the following
functions:

1. Dials a remote host if specified (see Section 2.3).
2. Truncates the console responseréksp.

3. Sends a signon record to the host. The signon record is taken from tegfiten (ASCII text), if it
exists, otherwisgeinit sends a blank record as a signon.

Sets up pipes for process communication.
Resets process-group fRIEsubsystem and restarts error logging.
Rebuilds thgoblog file from jobs queued for transmission.

Notifiesrjedisp (via a pipe) of any returned files still remaining in theol directory.

© N o g &

Starts the appropriate background procesgx(it, rjie?recy, andrje?disp).
9. Reports started or not started.

If failure occurs in a background process, it is reported by that process (error logging). The failing process
will normally attempt to reboot the subsystem by executie@init with a + as its argument (see Section

7). Whenrijeinit is executed witht as its argument, this indicates an attempted reboot,rigimit will

behave differently (No re-dialing is done to remote hosts, errors are logged rather than printed, etc.).

4.5 Rjexmit

This program writes data to thePM device. Rjexmitis started byrjeinit and runs in the background.
When runningrjexmit performs the following processing:

1. Checks thgoblog file for files to be transmitted. This is done every 5 seconds when not transmitting
data. When transmitting data, theblog is checked after transmitting 1 block from each active
reader?, and theconsolé.

2. Queues files from theblog according to the first two characters of the file name:

o rd0 - these files are queued on the reader with the fewest cards. Normal use sénte
command creates these files.

« sg- these files are queued on the last available reader to assure sequential transmission. Using
the-x option to thesendcommand creates these files.

2. Readerrefers to the logical readers usedRIg
3. Consolerefers to th&kJElogical console, which is separate from the logical readers.

« coJ- these files are queued on the console. fjésatcommand creates these files.

All files described above contaifBCDIC data.
Sends information tgedisp(via a pipe) for use in user notification of job status (see Section 4.7).

4. Builds blocks for transmission from active readers and the console. These blocks are built according
to the multi-leaving protocol.

5. Performs the following peripheral control:

« Sends requests to open readers when jobs have been assigned to them. These readers are not
active until a grant is received fraferecv(via a pipe).

« Halts and activates readers when waits or starts (respectively) are receivgdrizom
« Sends printer or punch grants when an open request is receivetefiea.
6. Notifiesrjedispthat a file has been transmitted, and unlinks the file.

If rjexmitencounters fatal errors, it creates tteadfile with an appropriate message, and signals the other
background processes to exit. If possilsjexmit will attempt to reboot theRJE subsystem by executing

rjeinit.
4.6 Rjerecv

This program reads data from th®M device. Rjerecvis started byrjeinit and runs in the background.
When runningrjerecvperforms the following processing:

1. Reads blocks of data received from the host system.
2. Handles data received according to its type. The two types of data are:
« Control information - rjerecvperforms the following peripheral device control:
a. Notifiesrjexmitof grants to its requests to open readers.
b. Passes wait and start reader informatiatetanit.
c. Passes open requests (for printers and punches) from the fj@atito
« User Information - the three major types of user information received are:

a. Console responses and job status messages. This data is appendeddp fileefor use
by rjestatandrjedisp.

b. The printer output from user jobs. This data is collected in temporary fil€g (n the
rpool directory. When a complete print job has been receivjedgcv notifies rjedisp (via
a pipe) that the file is to be dispatched.

c. The punch output from user jobs. This data is handled the same as printer output except
that therpool files are namegull

If the console response filesp exceeds 70,000 charactaysrecvtruncates the file.

4. Rjerecvstops accepting output from the remote machine if the number of free blocks in the file
system falls belovgpaceblocks Epaceis described in Section 2.3).

5. Rjerecvtruncates files teizeblocks if a received file exceeds this valigizgis described in Section
2.3).

If rjerecvencounters fatal errors, it createsdleadfile with an appropriate error message, signals the other
background processes to exit, and reboot&iEsubsystem.

4.7 Rjedisp

This program dispatches user informatidRjedispis started byrjeinit and runs in the background. When
running,rjedisp performs the following processing:

1. Dispatches output; the two types of output are printer and punch output. After receiving notification
of output ready frontjerecy, rjedisp searches for a “usr=" line in the received file. The format of a
“usr=""line is as follows:

usr=(user,place,level)
Rjedispdispatches the output according to the place field. \H¥EX Remote Job Entry User’s Guide
for a detailed description of the user specification.

2. Dispatches messages. The three types of messages are as follows:

« Job transmitted this message is sent to the submitting user wijgtisp reads this event notice
from therjexmit pipe.

« Job acknowledgementrjedisp dispatche$BM acknowledgement messages to submitting users.
If a job is not acknowledged properly or within a reasonable amount of time, a “Job not
acknowledged” message is dispatched.

« Output processing rjiedisp dispatches job output messages according to the options specified on
the “usr=" card. A normal output message indicates the returned file name is ready.

Messages can be masked by usinddtielon the “usr=" card.

3. Whenever output is to be handled $lyger, rjedisp checks thashqgeris running. This is done by

looking for theshgerlog file. If this file does not existjedispstartsshqger.
4.8 Shqger

This program executes user programs when they appear pidgbefield of the “usr="line in a returned
output file (print or punch).Shqeris started byrjedisp when the first output file using this feature is
returned. Subsequent files using this feature are logged for executiojedigp. When startedshger
performs the following processing:

1.

Builds thelog file from file names in thdusr/rje/sque directory. Each log entry is the name of a file
(tmp?) that contains the following information:

« the name of the file to be executed

« the name of the input file (file returned froBMm)
« the name of thiBM job

« the programmer name

« thelBM job number

« the user’s name from the “usr=""line

« the user’s login directory

« the minimum file system space

Shqgeruses two parameters. The first is the delay time betwegrfile reads. The second is a
nice(2) factor which is applied to any programs spawnedshger These values are defined in
/usr/include/rje.h (QDELAY andQNICE).

When each log entry is read, the appropriate program is spawned with the following characteristics:
« The returnedRJEfile is the standard input to the program.
» The standard and diagnostic outputs/dex/null.
« TheLOGNAME, HOME, andTZ variables are set to the appropriate values.
« The arguments to the spawned program, in order, are:

a. anumerical value indicating that the file system free space is equal or above (0) or below
(1) spaceblocks (see Section 2.3).

-10 -

b. thelBM job name.

c. the programmer name.
d. thelBM job number.

e. the user’s login name.

4. After executing each program, tingp? file and the returneBJEfile are removed.

5. UTILITY PROGRAMS
5.1 Snoop

Snoopis the generic name of a program that can be used to trace the stat&rofl alevice and its
associated communications lin&noopdepends on th&ace(4) driver for its information. It reads trace
entries from'dev/traceand converts them into a readable form that is printed on the standard output.

The usable name afnoopfor a particularRJE subsystem isnoopN whereN is the low order three bits
from the VPM minor device number. If/PM device names adhere to tkpmO, vpm1, vpmn naming
convention, eacBhoopname corresponds to ité"M device. In our hypothetical systempmO is used by
the rjel subsystem, andvpml is used by therje2 subsystem (see Section 2.3). Therefore,
lusr/rjel/snoopOand/ust/rie2/snooplare linked tdust/rje/snoop.

Eachsnoopprints trace entries for its associateéetM device. Trace entries are printed in the following
form:

sequence type information
where
» sequencespecifies the order of trace occurences. It is a value between 0 and 99.
« type specifies the action being traced (e.qg., transfers, driver activity).
« information describes data being transferred and driver activity.

The following table explains the meaning of trageesand their associatadformation .

type information meaning

CL Closed The/PM device has been closed.

CL Clean ThevPM driver is cleaning up for this device.
oP Opened Th&PM has been successfully opened.

oP Failed(open) The open failed because the device was already open.
oP Failed(dev) The open failed because the device number was out of range.

oP Failed(set) The open failed becausekiii€ could not be reset.

RR Buf The VPM script has returned a receive buffer to thiem
driver.

RX Buf The VPM script has returned a transmit buffer to tkem
driver.

RD numbytes Numbytes were read from thé&>M device byrjerecv.

SC

ST

ST

TR

TR

TR

TR

TR

TR

TR

TR

TR

TR

TR

TR

TR

TR

WR

Exithum)

Startup

Stopped

Started

R-ACK

S-ACK

R-NAK

S-NAK

R-ENQ

S-ENQ

R-WAIT

R-OKBLK

R-ERRBLK

R-SEQERR

R-JUNK
TIMEOUT
S-BLK

numbytes

-11 -

The VPM script has terminated. ThePM exit code isnum
Exit codes are defined irpm(4).

Th&MC has been started.

Th&PM script has been stopped.

The script has started tracing.
A two byte acknowledgement (ACK) string has been received
from the remote system. This indicates that the previous

transmission was properly received.

A two byte acknowledgement (ACK) string has been
transmitted to the remote system.

A “not-acknowledged” (NAK) character has been received
from the remote system. This indicates that the previous
transmission was not properly received.

A “not-acknowledged” (NAK) character has been transmitted
to the remote system.

A enquiry (ENQ) character has been received from the remote
system.

A enquiry (ENQ) character has been transmitted to the remote
system.

The remote machine has requested that no data be transmitted
to it.

A valid data block was received from the remote machine.

An invalid Cyclic Redundancy Check (CRC) was received
with a data block.

The block sequence count on a received data block was
invalid.

An invalid data block was received from the remote system.
The remote machine did not respond within 3 seconds.
A data block has been transmitted to the remote system.

Numbytes were written to theéPM device byrjexmit

Trace entries of typ&R are traces from thg&PM script. Section 7.5 describes required responses to events
and shows examples of typicoopoutput.

5.2 Rjestat

This program is supplied as a user command. The program’s two functions are to describe the status of the
RJEsubsystems and to provide a remt®® status console. The remainder of this section describes these

-12 -

two functions.
5.2.1 RJE Status

When invoked,rjestat reports the status of thRJE subsystems. If remote systerhogt) names are
specified, only those statuses are report®jestatuses the following rules to report the status of a
subsystem:

 Rjestatprints the contents of the filstatusif it exists in the subsystem directory. This file can contain
any message the administrator wishes to have printed when usgesiade

« If the file dead exists in the subsystem’s directory, the subsystem is not operating and the reason is
contained in the file.Rjestatreports thaRJEto hostis down and prints the contents of tHeadfile as
the reason.

« If the file stop exists in the subsystems directory, tiehalt program has been used to inhibit tialte
subsystem Rjestatreports thaRJEto hosthas been stopped by the operator.

« If neither thedeadnor thestopfile exists,rjestatreports thaRJEto hostis operating normally.

Rjestatis supplied as the user’s vehicle for checking the statuRa# It is not meant to be an
administrative tool; however, the reason for failure can be used to track the problem.

5.2.2 Status Console

To userjestatas a status console, thehostargument is usedRjestatprints the status of the subsystem,

then prompts witthost: if the subsystem is up. Each console request is submitted ®RJthprocesses for
transmission, and output is handled as specifiefestatchecks the status prior to submitting each request,

and will tell the user to try later if the subsystem goes doWjestatallows therje or super-user logins to

submit other than display requests. For a complete description of how to use the status console features,
seerjestat(1).

5.3 Cwt

This program converts any subsysterjoblog file to readable form. The first line printed is the process
group number of the subsystem processes. The remaining output consists of entries in the following form:

file user-id records level

Wherefile is the name of the submitted filaser-idis the submitters user numbeecordsis the number of
“card” images, andevelis the message level. Thecordsandlevelfields are not used if the file name is
col(console request submitted fgstat).

6. RJE ACCOUNTING

EachRJEsubsystem will store accounting information in #ertlogfile, if it exists. It is the responsibility
of the RJE administrator to create and maintain this file in the subsystem’s directory. Entries in this file
describeRJEline use and are of the following form:

day time file user records
Each field is delimited by a tab character. The meanings of each field is as follows:
1. day- The day of occurrence in the fomm/dd
2. time- The time of occurrence in the fotmh:mm:ss
3. file - The name of the&INIX file. The first two characters identify its type as follows:
« rd/sq- the file was transmitted to the remote system
« pr - the print output file was received from the remote system

« pu - the punch output file was received from the remote system

-13 -

4. user- The user-id of the user responsible for the transfer.
5. records- The number of records (card images) transferred for this file.

Sinceacctlogdata is not used RJE it should not be allowed to grow too large. This can be accomplished
by moving or processing the file during a system reboot (i.e/eto/rc beforethe RJE subsystems are
started).

The following list describes some of the reports that could be generated fromadtiéobg data.
Implementation of a program to produce accounting reports is the responsibility of the administrator.

» Periodic Reports - by using theday and time fields in the data, periodic usage reports can be
produced.

« By User Reports- by using thauserfield in the data, usage-by-user reports can be produced.

» By Subsystem Reports- by using the/usr/rje/lines file information and eaclacctlog file, a usage-
by-subsystem (or remote system) report can be produced.

Other reports can be produced using the type of file, size of jobs, etc.

7. Trouble Shooting

This section deals witRJE problems, and some methods for resolving them. The topics discussed in this
section are as follows:

» Automatic Error Recovery
» Manual Error Recovery
o RJEProblems
o KMC/VPM Problems
« Trace Interpretation
7.1 Automatic Error Recovery

RJE attempts to be self-sustaining with respect to its availability. In general, if problems occur on the
communications line or the remote machine (e.g., a crede)will continually try to restart itself (this
action will be referred to as a “reboot”). For example, if RBEsubsystem is started usingload, but the

IBM system is not available, a fatal error will occur. The process that detects this error (upatiit or
rierecv) will reboot the subsystem by executinjginit with a + as its argument. Wherjeinit detects at+
argument, it waits one minute before attempting to bring up the subsystem.

Therjehalt program can be used to preventRlt subsystem from rebooting itself when the remote system
is not available for a known period of time. When the remote system is made available, the subsystem may
be started in the normal way.

7.2 Manual Error Recovery

In order to manually recover from errors, one must know how to start and st@desubsystem. There
are two ways to start @Esubsystem:

« rje?load- this program loads and starts teM script, and executege?init.

« rje?init - this program starts thge? subsystem. In order to use this program, #m script must be
loaded and started.

To stop therje? subsystem, thge?halt program should be executed. This stops the subsystem gracefully
and will prevent a reboot.

The rjeload program must be used to staRJE for the first time (after aUNIX system reboot).
Subsequently, as long as the script is running, execution sequengekaif andrjeinit will stop and start
RJE

-14 -

Manually starting and stoppingJEcan be useful in tracking down problems. For example, if user jobs are
not being submitted to the host machine, the following sequence can ease identification of the problem:

1.
2.
3.
4,

Halt the ailing subsystem.
Start ssnoopprocess in the background with its output redirected to a file.
Restart the subsystem.

Scan thenoopoutput to determine where the problem is.

The snoopprogram is the most useful software tool for identifyiRge problems. Its uses are described in
Section 7.5.

7.3 RJE Problems

This section describes problems that can occur iR#Esubsystem. These problems generally occur when
the subsystem has not been set up properly. The following is a list of things to check to ensurerifat an
subsystem has been set up properly.

1.

IBM description - the description of the remot&NIX machine must be consistent with the
description in Section 2.2.

UNIX description- the file /usr/rje/lines must be set up properly. Section 2.3 describes this file in
detail.

KMC/VPM setup- the VPM software must be installed and the prop®v andKMC devices made.
EachVvPM device must correspond to the progstC device; se&pm(4).

Free space as a general rule, all file systems must have a reasonable amount of free space. File
systems containin@RJE subsystems must have sufficient free space as described in Section 2.3 to
ensure properJEoperation.

Directories- each subsystem’s directory and the controlling directory should be checked for the
following:

« All needed files exist.
« The proper prefix is on each applicaBlEE program.
« The link count is correct for files that are linked.
« All file and directory modes are correct.
A sample subsystem directory and the controlling directory are shown in Section 3.

Initialization - peripherals information must be consistent on both systems (see Section 2.3). The
line must be started on th@&V system, proper hardware connections made, etc.

Problems with a subsystem are indicated by error messdgjesnit checks for obstacles in bringing up

RJE If an obstacle is found, an error message indicating the obstacle is printed on the error output. If a
problem is encountered during normal operation, the message is loggedearritegefile. This file, error
messages, the output frosnoop and the checklist above should be used to determine and fix any
subsystem problems. Generally, if a subsystem is set up properly but will not operate, the problem is the
way theVPM or KMC has been set up, the remote system, or the hardware.

7.4 KMC/VPM Problems

This section describes theMC and VPM uses, and problems that can occur. After installkigC
hardware and makinggMC devices, allVPM software and devices must be made. Spa(4). The
following is a snapshot of theMC andVPM devices used on our hypothetical machine:

-15 -

Crw-r--r-- lrje rje 9, 0 Apr 16 07:04 /dev/kmcO
Crw-r--r-- lrje rje 15, O Apr 16 10:51 /dev/vpmO
Crw-r--r-- lrje rje 9, 1 Apr 10 08:21 /dev/kmc1l
Crw-r--r-- lrje rje 15, 81 Apr 7 13:25 /dev/vpml

where/dev/kmc? corresponds tédev/ivpm? (?=0,1). TheVPM minor device number determines which
VPM and KMC devices are used. Sepm(4) to determinevPM minor device numbers. The program
rieload prints the devices being used by the corresporrliEgubsystem.

The following is a list of items to check when problems occur:

1. Proper hardwarethe line unit must be compatible with the modem and have the proper settings (see
Section 2.1). Be sure that tK®IC address and interrupt vector are correct.

2. Proper Devices the major and minor device numbers for bothkhke andvVPM must be correct. It
should also be verified that tRIEsubsystem is using the corré@C andVPM device names.

3. Script runs- verify that theVPM script is able to run. This is done by tracing the progeM with
the propersnoopprogram. Snoopwill print “started” entries for both thekMC andVPM script (see
Section 5.1). If no output appears frosmoopwhen rjeload is executed, either th&MC is not
working properly, or theKkMC or VPM has not been set up properly (see items 1 and 2). Output of
any other type frorsnoopshould indicate where the problem is occurring.

7.5 Trace Interpretation

This section describes how to interpret trace output fromsti@pprogram, and gives several examples.
Section 5.1 describes the format and meaning of trace output lines, and should be read before this section.

Lines with type TR are traces from tYieM script. All others are driver traces and indicate the following:
« CL - activity occurring when the device has been closed.
« OP- activity occurring when the device has been opened.
» RD - read from device occurred.
» WR - write to device occurred.
» RR - areceive buffer has been returned.
o RX - a transmit buffer has been returned.
« ST- start or stop activity.
« SC- script exit type, exit value is given.

Section 5.1 enumerates all possible trace lines for each type, and describes the event. The remainder of this
section consists of example trace output and its interpretation. Comments describing events will appear
after the “x” in trace output. If more than ongPM were running, sequence numbers might not appear in
order. For clarity, example sequences will be in order.

7.5.1 Normal RJE startup

The following is an example of trace output whR#E has been started up. In this case the remote machine
responds to the enquiry byt&€NQ). The RJE subsystem signs on to the machine, then follows the
handshaking protocol (exchangiAgGKs).

Tracing vpmO

0 ST Startup * KMC started

1 TR Started x Script started

2 TR S-ENQ * Enquiry byte sent
3 ST Start * VPM Driver start
4 OoP Opened * VPM Device open

-16 -

5 TR R-ACK * Received acknowledgement
6 TR S-ACK % Handshaking

7 WR 84 bytes * Signon record written

8 TR R-ACK * Handshaking

9 TR S-BLK * Sent signon block

10 TR R-ACK * Block acknowledged

11 RX Buf * Transmit buffer returned
12 TR S-ACK sk Handshaking

13 TR R-ACK x .

14 TR S-ACK %

15 TR R-ACK %

16 TR S-ACK %

17 TR R-ACK %

18 TR S-ACK %

19 TR R-ACK x .

20 TR S-ACK *k Handshaking

If any jobs had been submitted via teendcommand, or jobs were waiting to be returned, the traces would
reflect the transfers rather than handshaking (see Section 7.5.3).

7.5.2 RJE startup IBM not responding

This example shows trace output whRoE has been started, but does not receive a response from the
remote machine. In general, tiRJE script will timeout if a response is not received from the remote
machine within 3 seconds of the last transmission. When a timeout is detected while starting up, the
enquiry byte ENQ) is retransmitted. This is repeated 6 times before the script gives up. Other timeout
responses will be discussed later.

Tracing vpmO

86 ST Startup * KMC started

87 TR Started * Script started

88 TR S-ENQ * Enquiry byte sent

89 ST Start * VPM Driver start

90 OP Opened * VPM device open

91 WR 84 bytes * Signon record written
92 TR TIMEOUT * No response to enquiry
93 TR S-ENQ * Enquiry byte sent

94 TR TIMEOUT * No response

95 TR S-ENQ * Enquiry byte sent

96 TR TIMEOUT * No response

97 TR S-ENQ * Enquiry byte sent

98 TR TIMEOUT * No response

99 TR S-ENQ * Enquiry byte sent

0 TR TIMEOUT * No response

1 TR S-ENQ * Enquiry byte sent

2 TR TIMEOUT * No response

3 RR Buf * Receive buffer returned
4 RD 1 bytes * 1 byte read (error)

5 SC Exit(0) * Script exits normally
6 CL Clean * Cleanup done

7 ST Stopped * KMC stopped

8 CL Closed * VPM device closed

The above sequence will be repeated approximately every minute until a positive response is received from
the host. During that minute tHRRIEsubsystem is dormant, and thestatcommand will report thaBM is
not responding. When this occurs, either th® machine is not available, down, line not started, etc., or

-17 -

there is a communications problem somewhere from wher&kh@ transmits data to where it receives

data. TheRJE administrator should first verify that theM machine is up, and the communications line

has been started. If so, a hardware trace of the communications line should be done to aid in detecting the
problem.

7.5.3 Transmitting and Receiving
This example shows trace output from the start of job transmission through its return. For simplicity, only
one job is being transmitted and returned.

Tracing vpmO

94 TR R-ACK * Handshaking
95 TR S-ACK *
9% TR R-ACK * .
97 TR S-ACK * Handshaking
98 WR 4 bytes * Open reader request written
99 TR R-ACK * Handshaking
0 TR S-BLK * Sent open request block
1 TR R-OKBLK * Received block (grant)
2 RX Buf * Transmit buffer returned
3 RR Buf * Receive buffer returned
4 TR S-ACK * Block acknowledged
5 RD 7 bytes * Read 7 bytes (grant)
6 TR R-ACK * Handshaking
7 TR S-ACK * Handshaking
8 WR 481 bytes * First block written
9 WR 470 bytes * Second block written
10 TR R-ACK * Handshaking
11 TR S-BLK * First block sent
12 TR R-ACK * Block acknowledged
13 RX Buf * Transmit buffer returned
14 WR 470 bytes > Third block written
15 TR S-BLK * Second block sent
16 TR R-OKBLK * Received block (on reader msg)
17 RX Buf * Transmit buffer returned
18 RR Buf * Receive buffer returned
19 WR 470 bytes * Fourth block written
20 RD 66 bytes * Read 66 bytes (on reader msg)
21 TR S-BLK * Third block sent
22 TR R-ACK * Block acknowledged
23 RX Buf * Transmit buffer returned
24 WR 147 bytes * Fifth block written
25 TR S-BLK * Fourth block sent
26 TR R-ACK * Block acknowledged
27 RX Buf * Transmit buffer returned
%
* More of the same
. *
93 TR R-ACK * Handshaking
94 TR S-ACK * Handshaking
95 TR R-OKBLK * Received block (request)
96 RR Buf * Receive buffer returned
97 TR S-ACK * Block acknowledged
98 RD 7 bytes * Read open printer request
99 TR R-ACK * Handshaking

0 TR S-ACK *

-18 -

1 TR R-ACK *
2 TR S-ACK *
3 TR R-ACK * .
4 TR S-ACK * Handshaking
5 WR 4 bytes * Printer grant written
6 TR R-ACK * Handshaking
7 TR S-BLK * Block sent (grant)
8 TR R-OKBLK * First block received
9 RX Buf * Transmit buffer returned
10 RR Buf * Receive buffer returned
11 TR S-ACK * Block acknowledged
12 RD 64 bytes * Read first block
13 TR R-OKBLK * Second block received
14 RR Buf * Receive buffer returned
15 TR S-ACK * Block acknowledged
16 RD 505 bytes * Read second block
17 TR R-OKBLK * Third block received
18 RR Buf * Receive buffer returned
19 TR S-ACK * Block acknowledged
20 TR R-OKBLK * Fourth block received
21 RR Buf * Receive buffer returned
22 TR S-ACK * Block acknowledged
23 TR R-ACK * Handshaking
24 TR S-ACK *
25 TR R-ACK * .
26 TR S-ACK * Handshaking
27 RD 470 bytes * Read third block
28 RD 494 bytes * Read fourth block
29 TR R-ACK * Handshaking
30 TR S-ACK * Handshaking

%

* And so on

%

Requests and grants are part of the multi-leaving protocol. Appendix@sé¥S MVS JES2 Log{SY24-

6000-1) describes this protocol in detail. When jobs are being transmitted and received simultaneously, as
in a busierRJE subsystem, much less handshaking is involved. Rather than acknowledging blocks with
ACKs, the protocol allows a block to be returned (this implies acknowledgement of the received block).
The following example shows trace output at a busy time:

tracing vpmO

41 TR R-OKBLK s Received block
42 RX Buf *

43 RR Buf *

44 TR S-BLK * Sent block

45 WR 493 bytes *

46 RD 496 bytes *

47 TR R-OKBLK s Received block
48 RX Buf *

49 RR Buf *

50 RD 65 bytes *

51 WR 4 bytes *

52 TR S-BLK * Sent block

53 TR R-OKBLK s Received block

54 RX Buf *

-19 -

55 RR Buf *

56 TR S-BLK * Sent block

57 WR 493 bytes *

58 RD 7 bytes *

59 TR R-OKBLK s Received block
60 RX Buf *

61 RR Buf *

62 WR 493 bytes *

63 RD 496 bytes *

64 TR S-BLK * Sent block

65 TR R-OKBLK s Received block

Notice that since there is work to be done on both sides, acknowledgements are implied.
7.5.4 Timeout Error Recovery

This example shows activity resulting from timeouts occurring during normal operation. These timeouts
were caused because the remiE83system has performance problems, and occasionally does not respond
in the required three seconds.

Tracing vpm1

27 TR S-ACK * Handshaking
28 TR R-ACK *
29 TR S-ACK * .
30 TR TIMEOUT * No response
31 TR S-NAK * Not acknowledged
32 TR TIMEOUT * No response
33 TR S-NAK * Not acknowledged
34 TR R-ACK * Response
35 TR S-ACK * Handshaking
36 TR R-ACK * .
sk
sk
. *
54 TR R-ACK * .
55 TR S-ACK * Handshaking
56 TR TIMEOUT * No response
57 TR S-NAK * Not acknowledged
58 TR R-ACK * Response
59 TR S-ACK * Handshaking

The response to these timeouts are NAKs (not acknowleddgetwill respond this way up to six times
before giving up and attempting a reboot. At this tinestat would report that there are “Line Errors”.
NAK is a request to retransmit the previous response.

7.5.5 Communication Line Errors
This example shows trace output from RIE subsystem that uses a dial-up connection. The phone line is
noisy and is prone to dropping.

Tracing vpm1

63 TR S-ACK * Handshaking
64 TR R-ACK *
65 TR S-ACK *

66 TR R-JUNK * Noise on the line

-20 -

67 TR S-NAK * Not acknowledged
68 TR R-ACK * Recovery

69 TR S-ACK *

70 TR R-ACK *

71 TR S-ACK *

72 TR TIMEOUT * Line has dropped
73 TR S-NAK * Attempting to recover
74 TR TIMEOUT * .

75 TR S-NAK *

76 TR TIMEOUT

77 TR S-NAK *

78 TR TIMEOUT

79 TR S-NAK *

80 TR TIMEOUT

81 TR S-NAK *

82 TR TIMEOUT

83 TR S-NAK * .

84 RR Buf * Receive buffer returned
85 RD 1 bytes * 1 byte read (error)
86 SC Exit(0) * Script exits

87 CL Clean * Cleanup

88 ST Stopped * KMC Stopped

89 CL Closed * VPM device closed

The error read in the above sequence ca®&3&d0 reboot andjestatto report line errors. If this type of
thing were to occur frequently, a different method of communication should be used.

7.5.6 Error Responses

As seen in the sections above, the response to most errors is to sk arhe only exception is when
starting up (see Section 7.5.2). WhenevetAK is received on either side, it indicates that the previous
transmission was not properly received. This should be followed by retransmission of the previous data.
Generally, NAKs should not occur frequently, and should be followed by recovery. If errors occur
frequently oNAK s do not cause recovery, the line should be checked for problems.

On somelBM systems, (e.g.JES2, an I/O error is printed at the system console whenevsiAK is
received. These I/O errors can also be helpful in detecting the problem; however, they will not be discussed
here as they vary with the system. It is assumed that somet@M gupport can assist if needed.

