
UNIX Remote Job Entry Administrative Guide

M. J. Fitton

Alcatel-Lucent Bell Laboratories
Piscataway, New Jersey 08854

1. INTRODUCTION

1.1 Purpose

This document is intended to augment the existing body of documentation on the design and operation of
UNIX* IBM RJE1. The reader should be familiar withrje(8), and theUNIX Remote Job Entry User’s
Guide, April 1, 1980. There will be assumptions made concerning allocation of responsibilities between
UNIX andIBM operations, hardware configuration, etc. Although these assumptions may not fully apply to
your location, they should not interfere with the intent of this document.

The major topics discussed in this paper are as follows:

� SETTING UP� hardware requirements andRJEgeneration on theIBM andUNIX systems.

� DIRECTORY STRUCTURES� the controlling RJE directory structure and a typicalRJE subsystem
directory structure.

� RJE PROGRAMS� programs that make up anRJEsubsystem.

� UTILITY PROGRAMS � utility programs that are available for debugging or tracing.

� RJE ACCOUNTING� the accounting of jobs done byRJE, and some methods for using this accounting
data.

� TROUBLE SHOOTING� error recovery and procedures for identifying and fixingRJEproblems.

1.2 Facilities

Discussions will focus on a hypotheticalRJE connection between aUNIX system,pwba, and anIBM
370/168, referred to asB. We also assume thatpwba is connected to anIBM 370/158, referred to asC.
TheUNIX machine emulates anIBM System/360 remote multi-leaving work station. For more information
on the multi-leaving protocol, see Appendix B ofOS/VS MVS JES2 Logic(SY24-6000-1).

2. SETTING UP

2.1 Hardware

To useRJEon aUNIX system the following hardware is needed (one per remote line):

� KMC11-B Microprocessor � used to drive theRJEline

� DMC11-DA or DMC11-FA line unit � the DMC11-DA interfaces with Bell 208 and 209 synchronous
modems or equivalent. Speeds of up to 19,200 bits per second can be used. TheDMC11-FA interfaces
with Bell 500 A LI/5 synchronous modems or equivalent. Speeds of up to 250,000 bits per second can
be used.

On theDMC11 line unit, the Cyclic Redundancy Check (CRC) switch should beoff. Turning the switch off
inhibits automatic transmission ofCRC bytes. The line unit should hold the line at logical zero when
inactive. For a more detailed description of the above hardware, seeTerminals and Communications
Handbook, Digital Equipment Corporation, 1979.

* UNIX is a Trademark of Bell Laboratories.

1. In this paper,RJE refers to theUNIX facilities provided byrje(8) andnot to the Remote Job Entry feature ofIBM ’s HASP or JES2
subsystems.

- 2 -

2.2 IBM Generation

The following applies to the hostIBM system. The remote line to theUNIX machine should be described as
a System/360 remote work station. The following parameters must be initialized andmustagree with their
counterparts on theUNIX machine:

� Number of printers (NUMPR) � the number of logical printers (up to 7)

� Number of punches (NUMPU) � the number of logical punches (up to 7)

� Number of readers (NUMRD) � the number of logical readers (up to 7)

TheJES2parameters for our hypothetical connection toIBM systemB are as follows:

RMT5 S/360,LINE=5,CONSOLE,MULTI,TRANSP,NUMPR=5,
NUMPU=1,NUMRD=5,ROUTECDE=5

R5.PR1 PRWIDTH=132
R5.PR2 PRWIDTH=132
R5.PR3 PRWIDTH=132
R5.PR4 PRWIDTH=132
R5.PR5 PRWIDTH=132
R5.PU1 NOSUSPND
R5.RD1 PRIOINC=0,PRIOLIM=14
R5.RD2 PRIOINC=0,PRIOLIM=14
R5.RD3 PRIOINC=0,PRIOLIM=14
R5.RD4 PRIOINC=0,PRIOLIM=14
R5.RD5 PRIOINC=0,PRIOLIM=14

Systempwbais referenced by line 5 (LINE=5), remote 5 (RMT5). It is defined as having a console, for the
rjestat(1) command, five printers, one punch, and five readers. Although you may have up to seven
printers or punches, the total number of printers and punches may not exceed eight. The line is described as
a transparent (TRANSP), multi-leaving (MULTI) line. The remaining information describes attributes
associated with the printers, punches and readers.

Normally, separator pages are transmitted withIBM print files. UNIX RJE does not remove separator pages.
To prevent transmission of separator pages on printer 1 of the previous example, its attributes would be:

R5.PR1 PRWIDTH=132,NOSEP

NOSEP should be included for all printers when separator pages are not desired. MostIBM systems can
also be told via a console command to cancel transmission of separator pages on printers. This can be done
from the IBM system console, or from the remoteUNIX machine viarjestat. For example, the following
JES2command would cancel separator page transmission on printer 1:

$TR5.PR1,S=N

2.3 UNIX Generation

If the RJE remote dialing facility is to be used, the administrator must make sure that the definition for
RJECU in the file /usr/include/rje.h is the device to be used for remote dialing.RJECU is defined to be
/dev/dn2 when distributed. To compile and installRJE, the normalmake(1) procedures are used (see
Setting upUNIX). Once anRJE subsystem has been installed, the remote line must be described in the
configuration file/usr/rje/lines. This file as it exists on our hypothetical systempwbais as follows:

B pwba /usr/rje1 rje1 vpm0 5:5:1 1200:512:y
C pwba /usr/rje2 rje2 vpm1 1:1:1 1200:512

/usr/rje/lines is accessed by all components ofRJE. Each line of the table (maximum of 8) defines anRJE
connection. Its seven columns may be labeledhost, system, directory , prefix , device, peripherals, and
parameters. These columns are described as follows:

� host� The IBM System name, e.g.,A, B, C. This string can be up to 5 characters long.

- 3 -

� system� TheUNIX System name (seeuname(1)).

� directory � the directory name of the servicingRJEsubsystem (e.g.,/usr/rje2).

� prefix � the string prepended to most files and programs in thedirectory (i.e., rje2).

� device� the name of the controlling Virtual Protocol Machine (VPM) device, with/dev/ excised. In
order to specify aVPM device, allVPM software must be installed, and the proper special files must be
made (seevpm(4) andmknod(1M)).

� peripherals � information on the logical devices (readers, printers, punches) used byRJE. There are
three subfields. Each subfield is separated by ‘‘:’’ and is described as follows:

1. Number of logical readers.

2. Number of logical printers.

3. Number of logical punches.

Note: the number of peripherals specified for anRJE subsystemmust agree with the number of
peripherals that have been described on the remote machine for that line.

� parameters � this field contains information on the type of connection to make. Each subfield is
separated by ‘‘:’’. Any or all fields may be omitted; however, the fields are positional. All but trailing
delimiters must be present. For example, in

1200:512::: 9-555-1212

subfields 3 and 4 are missing, but the delimiters are present. Each subfield is defined as follows:

1. space� this subfield specifies the amount of space (S) in blocks thatRJEtries to maintain on file
systems it touches. The default is 0 blocks.Send(1) will not submit jobs andrjeinit issues a
warning when less than 1.5S blocks are available;rjerecv stops accepting output from the host
when the capacity falls toSblocks;RJEbecomes dormant, until conditions improve. If the space
on the file system specified by the user on the ‘‘usr=’’ card would be depleted to a point belowS,
the file will be put in thejob subdirectory of the connection’s home directory rather than in the
place that the user requested.

2. size� this subfield specifies the size in blocks of the largest file that can be accepted from the
host without truncation taking place. The default is no truncation. Note thatUNIX has a default
one Mega-byte file size limit.

3. badjobs � this subfield specifies what to do with undeliverable returning jobs. If an output file is
undeliverable for any reason other than file system space limitations (e.g., missing or invalid
‘‘usr=’’ card) and this subfield contains the lettery, the output will be retained in thejob
subdirectory of the home directory, and loginrje is notified viamail(1). If this subfield has any
other value, undeliverable output will be discarded. The default isn.

4. console� this subfield specifies the status of the interactive status terminal for this line. If the
subfield contains ani, the status console facilities ofrjestat will be inhibited. In all cases, the
normal non-interactive uses ofrjestatwill continue to function. The default isy.

5. dial-up � this subfield contains a telephone number to be used to call a host machine. The
telephone number may contain the digits 0 through 9, and the character ‘‘�’’, which denotes a
pause. If the telephone number is not present, no dialing is attempted, and a leased line is
assumed.

When multiple readers have been specified, jobs that are submitted for transmission toIBM are assigned to
the reader with the fewest cards on it. Each reader gets an equal amount of service. This prevents smaller
jobs from having to wait for a previously submitted large job to be transmitted. When multiple printers or
punches have been specified, returning jobs get assigned to free printers (or punches) allowing smaller
output files to bypass large output files.

- 4 -

Deciding how many peripherals to specify depends on the use of thatRJEsubsystem. If anRJEsubsystem
is heavily used for off-line printing (i.e., output does not return to theUNIX machine), the administrator
would want to specify multiple readers, but would not have a need for multiple printers or punches.

3. DIRECTORY STRUCTURES

3.1 Controlling Directory

The controlling directory used byRJE is /usr/rje . This directory containsRJEprograms for use by separate
RJEsubsystems (e.g.,rje1, rje2, rje3), and the shell queuer’s directory. MostRJEprograms existing here
have been compiled such that eachRJE subsystem shares the text of these programs. A snapshot of this
directory on our hypothetical machine is as follows:

- rwx r - x r - x 2 r j e r j e 4 0 6 8 Ma r 4 1 0 : 4 2 c v t
- rw- r - - r - - 1 r j e r j e 4 2 Ap r 1 0 0 9 : 5 2 l i n e s
- rwx r - x r - x 2 r j e r j e 1 5 0 9 6 Ap r 1 0 1 3 : 0 1 r j e d i s p
- rwx r - x r - x 2 r j e r j e 2 3 2 8 Ma r 4 1 0 : 2 1 r j e h a l t
- rwx r - x r - x 2 r j e r j e 1 0 3 9 6 Ap r 1 5 1 0 : 0 7 r j e i n i t
- r - x - - - - - - 2 r j e r j e 7 8 5 Ap r 8 0 9 : 0 0 r j e l o a d
- rws r - x r - x 2 r j e r j e 5 0 4 0 Ma r 2 7 0 9 : 2 8 r j e q e r
- rwx r - x r - x 2 r j e r j e 4 0 7 2 Ap r 1 1 5 : 4 0 r j e r e c v
- rwx r - x r - x 2 r j e r j e 3 8 8 8 Ma r 2 7 0 9 : 3 5 r j e xm i t
- rws r - x r - x 1 r o o t r j e 2 6 9 6 Ma r 2 7 1 4 : 4 2 s h q e r
- rwx r - x r - x 2 r j e r j e 5 9 2 0 Ap r 2 1 5 : 4 7 s n o o p
d rwx r - x r - x 2 r j e r j e 8 0 Ma r 2 5 1 3 : 2 6 s q u e

RJEsubsystems are generated in their own directory by linking the program names in this directory to the
appropriate names in the subsystem directory. The programs are described in Section 4. The filelines is
the configuration file used by allRJEsubsystems. The directorysque is used by the Shell queuer (shqer).
This directory contains:

- rw- r - - r - - 1 r j e r j e 0 F e b 1 4 1 4 : 0 4 e r r o r s
- rw- r - - r - - 1 r j e r j e 0 F e b 1 4 1 4 : 0 4 l o g

Whenshqerhas work to do, the fileslog anderrors will be of non-zero length, and temporary files (tmp∗)
will also appear here. For a complete description ofshqerand these files, see Section 4.8.

3.2 Subsystem Directory

The RJEsubsystem described in this section maintains the connection betweenpwbaand IBM B, and will
be referred to asrje1. The first line of/usr/rje/lines (see Section 2.3) describesrje1. As noted in this file,
rje1 runs in the directory/usr/rje1. A snapshot of this directory is as follows:

- 5 -

- rw- r - - r - - 1 r j e r j e 4 9 9 0 Ap r 1 5 0 8 : 3 0 a c c t l o g
- rwx r - x r - x 2 r j e r j e 4 0 6 8 Ma r 4 1 0 : 4 2 c v t
- rw- r - - r - - 1 r j e r j e 0 Ap r 1 5 0 4 : 0 2 e r r l o g
d rwx rwx rwx 2 r j e r j e 1 9 2 Ap r 1 0 0 9 : 5 1 j o b
- rw- r - - r - - 1 r j e r j e 1 9 4 Ap r 1 5 0 8 : 1 1 j o b l o g
- rw- r - - r - - 1 r j e r j e 0 Ap r 1 5 0 8 : 1 1 r e s p
- rwx r - x r - x 2 r j e r j e 1 5 0 9 6 Ap r 1 0 1 3 : 0 1 r j e 1 d i s p
- rwx r - x r - x 2 r j e r j e 2 3 2 8 Ma r 4 1 0 : 2 1 r j e 1 h a l t
- rwx r - x r - x 2 r j e r j e 1 0 3 9 6 Ap r 1 5 1 0 : 0 7 r j e 1 i n i t
- r - x - - - - - - 2 r j e r j e 7 8 5 Ap r 8 0 9 : 0 0 r j e 1 l o a d
- rws r - x r - x 2 r j e r j e 5 0 4 0 Ma r 2 7 0 9 : 2 8 r j e 1 q e r
- rwx r - x r - x 2 r j e r j e 4 0 7 2 Ap r 1 1 5 : 4 0 r j e 1 r e c v
- rwx r - x r - x 2 r j e r j e 3 8 8 8 Ma r 2 7 0 9 : 3 5 r j e 1 xmi t
d rwx r - x r - x 2 r j e r j e 1 4 4 Ap r 1 5 0 8 : 3 0 r p o o l
- rwx r - x r - x 2 r j e r j e 5 9 2 0 Ap r 2 1 5 : 4 7 s n o o p 0
d rwx rwx rwx 2 r j e r j e 1 7 6 Ap r 1 0 1 3 : 0 3 s p o o l
d rwx r - x r - x 2 r j e r j e 2 2 4 Ap r 1 0 1 3 : 5 6 s q u e u e
- rw- r - - r - - 1 r j e r j e 0 Ap r 1 5 1 0 : 3 0 s t o p
- rw- r - - r - - 1 r j e r j e 2 7 4 Ma r 7 2 0 : 2 5 t e s t j o b

The programsrje1∗, cvt, and snoop0are linked to the corresponding programs in/usr/rje , and are
described in detail in Section 4. The remaining files and their uses are as follows:

� acctlog � accounting data is stored in this file, if it exists. This file is the responsibility of theRJE
administrator. For a discussion of its uses, see Section 5.

� errlog � used byrje1 to log errors. It can be useful for debuggingrje1 problems.

� joblog � used byrje1qer and rjestat to notify rje1xmit that a job (or console request) has been
submitted. It also contains the process-group number of therje1 processes. The programcvt can be
used to convert this file to a readable form.

� resp � contains console messages received fromIBM B. These messages can be responses forrjestat,
or IBM responses to submitted jobs (i.e., on reader messages). This file is truncated if it grows to a size
greater than 70,000 bytes.

� stop � indicates thatrje1halt has been executed. The existence of this file indicates torjestat that rje1
has been halted by the operator.

� testjob � a sample job that can be submitted to test therje1 subsystem. Originally, the job control
statements may have to be changed to suit yourIBM system.

Whenrje1 terminates abnormally, the filedead should appear in this directory. This file contains a short
message indicating whyrje1 is not operating, and is used byrjestat to report the problem. The remaining
directories and their uses are as follows:

� job � used to save undeliverable jobs, if the proper parameter has been specified in/usr/rje/lines. The
sample job described above is also delivered to this directory. This directory should be mode 777.

� rpool � contains temporary files used to gather output from the remote machine. These files are named
pr∗ (for print output files), andpu∗ (for punch output files). Once a complete file has been received,
the file is dispatched in the proper way byrje1disp.

� spool � used bysendto store temporary files to be submitted to the remote machine. This directory
must be mode 777.

� squeue� used byrje1 to store submitted files until they are transmitted. The programrje1qer is used
by sendto move the temporary files in thespooldirectory to this directory.

- 6 -

4. RJE PROGRAMS

All programs described below, with the exception ofrjestat, exist in/usr/rje . These programs are ‘‘shared
text’’ and are linked (exceptshqer) to the proper names in each subsystem directory. The names described
below are generic; the programs in therje2 directory would berje2qer, rje2init , etc.

Each availableRJEsubsystem occupies three process slots. The slots are used forrje?xmit, the transmitter;
rje?recv, the receiver; andrje?disp, the dispatcher. One additional process slot is used forshqer,
regardless of how many subsystems are available.

EachRJEsubsystem tries to be self-sustaining, and logs any errors encountered during normal operation in
its errlog file.

4.1 Rjeqer

This program is used bysendto queue files for transmission. When invoked, it performs the following
steps:

1. Moves the temporarypnch(5) format file in thespooldirectory to thesqueuedirectory.

2. Writes an entry at the end of the filejoblog containing:

� the name of the file to be transmitted

� the submitter’s user-id

� the number of card images in the file

� the message level for this job

The file joblog is used to notifyrjexmitof work to be done.

3. Notifies user that file has been queued.

Senddetermines which host system is desired, and invokes the properrje?qer by getting theprefix from
the lines file (e.g., if sending toIBM C from our machine,rje2qerwould be invoked).

4.2 Rjeload

This program is used to start anRJE subsystem. Its prefix determines which subsystem to start (e.g.,
rje2loadstartsrje2). To start theRJEsubsystems on our machine, the following commands are executed in
/etc/rc when changing toinit state 2 (multi-user):

rm �f /usr/rje/sque/log
su rje �c "/usr/rje1/rje1load"
su rje �c "/usr/rje2/rje2load"

The file /usr/rje/sque/log is removed to ensure the correct operation ofshqer. When invoked,rjeload
performs the following steps:

1. Finds the properKMC device by using the minor device number of the correspondingVPM device
(the first two bits).

2. Useskasb(1) to perform the following:

� reset theKMC

� load theVPM script (/etc/rjeproto)

� start theKMC running

3. Executesrje?init to start therje? processes (e.g.,rje2loadexecutesrje2init).

4.3 Rjehalt

This program is used to halt anRJE subsystem. To haltrje2 on our machine,/usr/rje2/rje2halt is
executed. This should be done in theshutdownprocedure for your machine to ensure graceful termination
of RJE. Rjehalt will allow only those users with permission to halt anRJE subsystem.Rjehalt uses the

- 7 -

header on the filejoblog to get the process-group of theRJEsubsystem processes. This group is signaled to
terminate. When all processes have terminated,rjehalt sends a ‘‘signoff’’ record to the host machine. This
signoff record is taken from the filesignoff (ASCII text), if it exists, otherwise a ‘‘/�signoff’’ record is sent.
On completion,rjehalt creates the filestop in the subsystem directory, that causesrjestat to report thatRJE
to the corresponding host has been stopped by the operator.

4.4 Rjeinit

This program initializes anRJEsubsystem. It is used byrjeload, and can be used to restart a subsystem if
the VPM script has previously been started.Rjeinit should only be executed by userrje . Rjeinit fails if
there are less than 100 blocks or 10 inodes free in the file system. It issues a warning if there are less than
1.5X blocks, (where X is the first field in the parameters for that line), or 100 inodes free in the file system.
If rjeinit fails, the reason for the failure is reported, and the filedead is created containing ‘‘Init failed’’.
This will be reported byrjestat until a subsequentrjeinit succeeds.Rjeinit performs the following
functions:

1. Dials a remote host if specified (see Section 2.3).

2. Truncates the console response fileresp.

3. Sends a signon record to the host. The signon record is taken from the filesignon (ASCII text), if it
exists, otherwiserjeinit sends a blank record as a signon.

4. Sets up pipes for process communication.

5. Resets process-group forRJEsubsystem and restarts error logging.

6. Rebuilds thejoblog file from jobs queued for transmission.

7. Notifiesrjedisp(via a pipe) of any returned files still remaining in therpool directory.

8. Starts the appropriate background processes (rje?xmit, rje?recv, andrje?disp).

9. Reports started or not started.

If failure occurs in a background process, it is reported by that process (error logging). The failing process
will normally attempt to reboot the subsystem by executingrje?init with a + as its argument (see Section
7). Whenrjeinit is executed with+ as its argument, this indicates an attempted reboot, andrjeinit will
behave differently (No re-dialing is done to remote hosts, errors are logged rather than printed, etc.).

4.5 Rjexmit

This program writes data to theVPM device. Rjexmit is started byrjeinit and runs in the background.
When running,rjexmitperforms the following processing:

1. Checks thejoblog file for files to be transmitted. This is done every 5 seconds when not transmitting
data. When transmitting data, thejoblog is checked after transmitting 1 block from each active
reader2, and theconsole3.

2. Queues files from thejoblog according to the first two characters of the file name:

� rd∗ � these files are queued on the reader with the fewest cards. Normal use of thesend
command creates these files.

� sq∗ � these files are queued on the last available reader to assure sequential transmission. Using
the�x option to thesendcommand creates these files.

2. Readerrefers to the logical readers used byRJE.

3. Consolerefers to theRJElogical console, which is separate from the logical readers.

- 8 -

� co∗ � these files are queued on the console. Therjestatcommand creates these files.

All files described above containEBCDIC data.

3. Sends information torjedisp(via a pipe) for use in user notification of job status (see Section 4.7).

4. Builds blocks for transmission from active readers and the console. These blocks are built according
to the multi-leaving protocol.

5. Performs the following peripheral control:

� Sends requests to open readers when jobs have been assigned to them. These readers are not
active until a grant is received fromrjerecv(via a pipe).

� Halts and activates readers when waits or starts (respectively) are received fromrjerecv.

� Sends printer or punch grants when an open request is received fromrjerecv.

6. Notifiesrjedisp that a file has been transmitted, and unlinks the file.

If rjexmit encounters fatal errors, it creates thedead file with an appropriate message, and signals the other
background processes to exit. If possible,rjexmit will attempt to reboot theRJE subsystem by executing
rjeinit .

4.6 Rjerecv

This program reads data from theVPM device. Rjerecvis started byrjeinit and runs in the background.
When running,rjerecvperforms the following processing:

1. Reads blocks of data received from the host system.

2. Handles data received according to its type. The two types of data are:

� Control information � rjerecvperforms the following peripheral device control:

a. Notifiesrjexmitof grants to its requests to open readers.

b. Passes wait and start reader information torjexmit.

c. Passes open requests (for printers and punches) from the host torjexmit.

� User Information � the three major types of user information received are:

a. Console responses and job status messages. This data is appended to theresp file for use
by rjestatandrjedisp.

b. The printer output from user jobs. This data is collected in temporary files (pr∗) in the
rpool directory. When a complete print job has been received,rjerecvnotifies rjedisp (via
a pipe) that the file is to be dispatched.

c. The punch output from user jobs. This data is handled the same as printer output except
that therpool files are namedpu∗.

3. If the console response filerespexceeds 70,000 characters,rjerecvtruncates the file.

4. Rjerecvstops accepting output from the remote machine if the number of free blocks in the file
system falls belowspaceblocks (spaceis described in Section 2.3).

5. Rjerecvtruncates files tosizeblocks if a received file exceeds this value (sizeis described in Section
2.3).

If rjerecvencounters fatal errors, it creates thedead file with an appropriate error message, signals the other
background processes to exit, and reboots theRJEsubsystem.

4.7 Rjedisp

This program dispatches user information.Rjedispis started byrjeinit and runs in the background. When
running,rjedispperforms the following processing:

- 9 -

1. Dispatches output; the two types of output are printer and punch output. After receiving notification
of output ready fromrjerecv, rjedispsearches for a ‘‘usr=’’ line in the received file. The format of a
‘‘usr=’’ line is as follows:

usr=(user,place,level)

Rjedispdispatches the output according to the place field. SeeUNIX Remote Job Entry User’s Guide
for a detailed description of the user specification.

2. Dispatches messages. The three types of messages are as follows:

� Job transmitted� this message is sent to the submitting user whenrjedisp reads this event notice
from therjexmitpipe.

� Job acknowledgement� rjedispdispatchesIBM acknowledgement messages to submitting users.
If a job is not acknowledged properly or within a reasonable amount of time, a ‘‘Job not
acknowledged’’ message is dispatched.

� Output processing� rjedispdispatches job output messages according to the options specified on
the ‘‘usr=’’ card. A normal output message indicates the returned file name is ready.

Messages can be masked by using thelevelon the ‘‘usr=’’ card.

3. Whenever output is to be handled byshqer, rjedisp checks thatshqer is running. This is done by
looking for theshqerlog file. If this file does not exist,rjedispstartsshqer.

4.8 Shqer

This program executes user programs when they appear in theplacefield of the ‘‘usr=’’ line in a returned
output file (print or punch).Shqer is started byrjedisp when the first output file using this feature is
returned. Subsequent files using this feature are logged for execution byrjedisp. When started,shqer
performs the following processing:

1. Builds thelog file from file names in the/usr/rje/sque directory. Each log entry is the name of a file
(tmp?) that contains the following information:

� the name of the file to be executed

� the name of the input file (file returned fromIBM)

� the name of theIBM job

� the programmer name

� the IBM job number

� the user’s name from the ‘‘usr=’’ line

� the user’s login directory

� the minimum file system space

2. Shqeruses two parameters. The first is the delay time betweenlog file reads. The second is a
nice(2) factor which is applied to any programs spawned byshqer. These values are defined in
/usr/include/rje.h (QDELAY andQNICE).

3. When each log entry is read, the appropriate program is spawned with the following characteristics:

� The returnedRJEfile is the standard input to the program.

� The standard and diagnostic outputs are/dev/null.

� TheLOGNAME, HOME, andTZ variables are set to the appropriate values.

� The arguments to the spawned program, in order, are:

a. a numerical value indicating that the file system free space is equal or above (0) or below
(1) spaceblocks (see Section 2.3).

- 10 -

b. theIBM job name.

c. the programmer name.

d. theIBM job number.

e. the user’s login name.

4. After executing each program, thetmp? file and the returnedRJEfile are removed.

5. UTILITY PROGRAMS

5.1 Snoop

Snoopis the generic name of a program that can be used to trace the state of aVPM device and its
associated communications line.Snoopdepends on thetrace(4) driver for its information. It reads trace
entries from/dev/traceand converts them into a readable form that is printed on the standard output.

The usable name ofsnoopfor a particularRJE subsystem issnoopN, whereN is the low order three bits
from the VPM minor device number. IfVPM device names adhere to thevpm0, vpm1, vpmn naming
convention, eachsnoopname corresponds to itsVPM device. In our hypothetical system,vpm0 is used by
the rje1 subsystem, andvpm1 is used by the rje2 subsystem (see Section 2.3). Therefore,
/usr/rje1/snoop0and/usr/rje2/snoop1are linked to/usr/rje/snoop.

Eachsnoopprints trace entries for its associatedVPM device. Trace entries are printed in the following
form:

sequence type information

where

� sequencespecifies the order of trace occurences. It is a value between 0 and 99.

� type specifies the action being traced (e.g., transfers, driver activity).

� information describes data being transferred and driver activity.

The following table explains the meaning of tracetypesand their associatedinformation .

type information meaning

CL Closed TheVPM device has been closed.

CL Clean TheVPM driver is cleaning up for this device.

OP Opened TheVPM has been successfully opened.

OP Failed(open) The open failed because the device was already open.

OP Failed(dev) The open failed because the device number was out of range.

OP Failed(set) The open failed because theKMC could not be reset.

RR Buf The VPM script has returned a receive buffer to theVPM
driver.

RX Buf The VPM script has returned a transmit buffer to theVPM
driver.

RD numbytes Numbytes were read from theVPM device byrjerecv.

- 11 -

SC Exit(num) The VPM script has terminated. TheVPM exit code isnum.
Exit codes are defined invpm(4).

ST Startup TheKMC has been started.

ST Stopped TheVPM script has been stopped.

TR Started The script has started tracing.

TR R-ACK A two byte acknowledgement (ACK) string has been received
from the remote system. This indicates that the previous
transmission was properly received.

TR S-ACK A two byte acknowledgement (ACK) string has been
transmitted to the remote system.

TR R-NAK A ‘‘not-acknowledged’’ (NAK) character has been received
from the remote system. This indicates that the previous
transmission was not properly received.

TR S-NAK A ‘‘not-acknowledged’’ (NAK) character has been transmitted
to the remote system.

TR R-ENQ A enquiry (ENQ) character has been received from the remote
system.

TR S-ENQ A enquiry (ENQ) character has been transmitted to the remote
system.

TR R-WAIT The remote machine has requested that no data be transmitted
to it.

TR R-OKBLK A valid data block was received from the remote machine.

TR R-ERRBLK An invalid Cyclic Redundancy Check (CRC) was received
with a data block.

TR R-SEQERR The block sequence count on a received data block was
invalid.

TR R-JUNK An invalid data block was received from the remote system.

TR TIMEOUT The remote machine did not respond within 3 seconds.

TR S-BLK A data block has been transmitted to the remote system.

WR numbytes Numbytes were written to theVPM device byrjexmit.

Trace entries of typeTR are traces from theVPM script. Section 7.5 describes required responses to events
and shows examples of typicalsnoopoutput.

5.2 Rjestat

This program is supplied as a user command. The program’s two functions are to describe the status of the
RJEsubsystems and to provide a remoteIBM status console. The remainder of this section describes these

- 12 -

two functions.

5.2.1 RJE Status

When invoked,rjestat reports the status of theRJE subsystems. If remote system (host) names are
specified, only those statuses are reported.Rjestat uses the following rules to report the status of a
subsystem:

� Rjestatprints the contents of the filestatus if it exists in the subsystem directory. This file can contain
any message the administrator wishes to have printed when users userjestat.

� If the file dead exists in the subsystem’s directory, the subsystem is not operating and the reason is
contained in the file.Rjestatreports thatRJEto host is down and prints the contents of thedead file as
the reason.

� If the file stop exists in the subsystems directory, therjehalt program has been used to inhibit thatRJE
subsystem.Rjestatreports thatRJEto host has been stopped by the operator.

� If neither thedeadnor thestop file exists,rjestatreports thatRJEto host is operating normally.

Rjestat is supplied as the user’s vehicle for checking the status ofRJE. It is not meant to be an
administrative tool; however, the reason for failure can be used to track the problem.

5.2.2 Status Console

To userjestat as a status console, the�shost argument is used.Rjestatprints the status of the subsystem,
then prompts withhost: if the subsystem is up. Each console request is submitted to theRJEprocesses for
transmission, and output is handled as specified.Rjestatchecks the status prior to submitting each request,
and will tell the user to try later if the subsystem goes down.Rjestatallows therje or super-user logins to
submit other than display requests. For a complete description of how to use the status console features,
seerjestat(1).

5.3 Cvt

This program converts any subsystem’sjoblog file to readable form. The first line printed is the process
group number of the subsystem processes. The remaining output consists of entries in the following form:

file user-id records level

Wherefile is the name of the submitted file,user-idis the submitters user number,recordsis the number of
‘‘card’’ images, andlevel is the message level. Therecordsandlevel fields are not used if the file name is
co∗ (console request submitted byrjestat).

6. RJE ACCOUNTING

EachRJEsubsystem will store accounting information in theacctlogfile, if it exists. It is the responsibility
of the RJE administrator to create and maintain this file in the subsystem’s directory. Entries in this file
describeRJEline use and are of the following form:

day time file user records

Each field is delimited by a tab character. The meanings of each field is as follows:

1. day � The day of occurrence in the formmm/dd.

2. time � The time of occurrence in the formhh:mm:ss.

3. file � The name of theUNIX file. The first two characters identify its type as follows:

� rd /sq� the file was transmitted to the remote system

� pr � the print output file was received from the remote system

� pu � the punch output file was received from the remote system

- 13 -

4. user � The user-id of the user responsible for the transfer.

5. records � The number of records (card images) transferred for this file.

Sinceacctlogdata is not used byRJE, it should not be allowed to grow too large. This can be accomplished
by moving or processing the file during a system reboot (i.e., in/etc/rc before the RJE subsystems are
started).

The following list describes some of the reports that could be generated from theacctlog data.
Implementation of a program to produce accounting reports is the responsibility of the administrator.

� Periodic Reports � by using theday and time fields in the data, periodic usage reports can be
produced.

� By User Reports� by using theuser field in the data, usage-by-user reports can be produced.

� By Subsystem Reports� by using the/usr/rje/lines file information and eachacctlog file, a usage-
by-subsystem (or remote system) report can be produced.

Other reports can be produced using the type of file, size of jobs, etc.

7. Trouble Shooting

This section deals withRJEproblems, and some methods for resolving them. The topics discussed in this
section are as follows:

� Automatic Error Recovery

� Manual Error Recovery

� RJEProblems

� KMC/VPM Problems

� Trace Interpretation

7.1 Automatic Error Recovery

RJE attempts to be self-sustaining with respect to its availability. In general, if problems occur on the
communications line or the remote machine (e.g., a crash)RJE will continually try to restart itself (this
action will be referred to as a ‘‘reboot’’). For example, if anRJEsubsystem is started usingrjeload, but the
IBM system is not available, a fatal error will occur. The process that detects this error (usuallyrjexmit or
rjerecv) will reboot the subsystem by executingrjeinit with a + as its argument. Whenrjeinit detects a+
argument, it waits one minute before attempting to bring up the subsystem.

Therjehalt program can be used to prevent anRJEsubsystem from rebooting itself when the remote system
is not available for a known period of time. When the remote system is made available, the subsystem may
be started in the normal way.

7.2 Manual Error Recovery

In order to manually recover from errors, one must know how to start and stop anRJEsubsystem. There
are two ways to start anRJEsubsystem:

� rje?load� this program loads and starts theVPM script, and executesrje?init .

� rje?init � this program starts therje? subsystem. In order to use this program, theVPM script must be
loaded and started.

To stop therje? subsystem, therje?halt program should be executed. This stops the subsystem gracefully
and will prevent a reboot.

The rjeload program must be used to startRJE for the first time (after aUNIX system reboot).
Subsequently, as long as the script is running, execution sequences ofrjehalt andrjeinit will stop and start
RJE.

- 14 -

Manually starting and stoppingRJEcan be useful in tracking down problems. For example, if user jobs are
not being submitted to the host machine, the following sequence can ease identification of the problem:

1. Halt the ailing subsystem.

2. Start asnoopprocess in the background with its output redirected to a file.

3. Restart the subsystem.

4. Scan thesnoopoutput to determine where the problem is.

Thesnoopprogram is the most useful software tool for identifyingRJEproblems. Its uses are described in
Section 7.5.

7.3 RJE Problems

This section describes problems that can occur in anRJEsubsystem. These problems generally occur when
the subsystem has not been set up properly. The following is a list of things to check to ensure that anRJE
subsystem has been set up properly.

1. IBM description � the description of the remoteUNIX machine must be consistent with the
description in Section 2.2.

2. UNIX description� the file /usr/rje/lines must be set up properly. Section 2.3 describes this file in
detail.

3. KMC/VPM setup� theVPM software must be installed and the properVPM andKMC devices made.
EachVPM device must correspond to the properKMC device; seevpm(4).

4. Free space� as a general rule, all file systems must have a reasonable amount of free space. File
systems containingRJE subsystems must have sufficient free space as described in Section 2.3 to
ensure properRJEoperation.

5. Directories� each subsystem’s directory and the controlling directory should be checked for the
following:

� All needed files exist.

� The proper prefix is on each applicableRJEprogram.

� The link count is correct for files that are linked.

� All file and directory modes are correct.

A sample subsystem directory and the controlling directory are shown in Section 3.

6. Initialization � peripherals information must be consistent on both systems (see Section 2.3). The
line must be started on theIBM system, proper hardware connections made, etc.

Problems with a subsystem are indicated by error messages.Rjeinit checks for obstacles in bringing up
RJE. If an obstacle is found, an error message indicating the obstacle is printed on the error output. If a
problem is encountered during normal operation, the message is logged in theerrlog file. This file, error
messages, the output fromsnoop, and the checklist above should be used to determine and fix any
subsystem problems. Generally, if a subsystem is set up properly but will not operate, the problem is the
way theVPM or KMC has been set up, the remote system, or the hardware.

7.4 KMC/VPM Problems

This section describes theKMC and VPM uses, and problems that can occur. After installingKMC
hardware and makingKMC devices, allVPM software and devices must be made. Seevpm(4). The
following is a snapshot of theKMC andVPM devices used on our hypothetical machine:

- 15 -

c rw- r - - r - - 1 r j e r j e 9 , 0 Ap r 16 07 : 04 / dev / kmc0
c rw- r - - r - - 1 r j e r j e 15 , 0 Ap r 16 10 : 51 / dev / vpm0

c rw- r - - r - - 1 r j e r j e 9 , 1 Ap r 10 08 : 21 / dev / kmc1
c rw- r - - r - - 1 r j e r j e 15 , 81 Ap r 7 13 : 25 / dev / vpm1

where/dev/kmc? corresponds to/dev/vpm? (?=0,1). TheVPM minor device number determines which
VPM and KMC devices are used. Seevpm(4) to determineVPM minor device numbers. The program
rjeloadprints the devices being used by the correspondingRJEsubsystem.

The following is a list of items to check when problems occur:

1. Proper hardware� the line unit must be compatible with the modem and have the proper settings (see
Section 2.1). Be sure that theKMC address and interrupt vector are correct.

2. Proper Devices � the major and minor device numbers for both theKMC andVPM must be correct. It
should also be verified that theRJEsubsystem is using the correctKMC andVPM device names.

3. Script runs� verify that theVPM script is able to run. This is done by tracing the properVPM with
the propersnoopprogram. Snoopwill print ‘‘started’’ entries for both theKMC andVPM script (see
Section 5.1). If no output appears fromsnoopwhen rjeload is executed, either theKMC is not
working properly, or theKMC or VPM has not been set up properly (see items 1 and 2). Output of
any other type fromsnoopshould indicate where the problem is occurring.

7.5 Trace Interpretation

This section describes how to interpret trace output from thesnoopprogram, and gives several examples.
Section 5.1 describes the format and meaning of trace output lines, and should be read before this section.

Lines with type TR are traces from theVPM script. All others are driver traces and indicate the following:

� CL � activity occurring when the device has been closed.

� OP � activity occurring when the device has been opened.

� RD � read from device occurred.

� WR � write to device occurred.

� RR � a receive buffer has been returned.

� RX � a transmit buffer has been returned.

� ST � start or stop activity.

� SC � script exit type, exit value is given.

Section 5.1 enumerates all possible trace lines for each type, and describes the event. The remainder of this
section consists of example trace output and its interpretation. Comments describing events will appear
after the ‘‘�’’ in trace output. If more than oneVPM were running, sequence numbers might not appear in
order. For clarity, example sequences will be in order.

7.5.1 Normal RJE startup

The following is an example of trace output whenRJEhas been started up. In this case the remote machine
responds to the enquiry byte (ENQ). The RJE subsystem signs on to the machine, then follows the
handshaking protocol (exchangingACKs).

Tracing vpm0
0 ST Startup � KMC started
1 TR Started � Script started
2 TR S-ENQ � Enquiry byte sent
3 ST Start � VPM Driver start
4 OP Opened � VPM Device open

- 16 -

5 TR R-ACK � Received acknowledgement
6 TR S-ACK � Handshaking
7 WR 84 bytes � Signon record written
8 TR R-ACK � Handshaking
9 TR S-BLK � Sent signon block
10 TR R-ACK � Block acknowledged
11 RX Buf � Transmit buffer returned
12 TR S-ACK � Handshaking
13 TR R-ACK � .
14 TR S-ACK � .
15 TR R-ACK � .
16 TR S-ACK � .
17 TR R-ACK � .
18 TR S-ACK � .
19 TR R-ACK � .
20 TR S-ACK � Handshaking

If any jobs had been submitted via thesendcommand, or jobs were waiting to be returned, the traces would
reflect the transfers rather than handshaking (see Section 7.5.3).

7.5.2 RJE startup � IBM not responding

This example shows trace output whenRJE has been started, but does not receive a response from the
remote machine. In general, theRJE script will timeout if a response is not received from the remote
machine within 3 seconds of the last transmission. When a timeout is detected while starting up, the
enquiry byte (ENQ) is retransmitted. This is repeated 6 times before the script gives up. Other timeout
responses will be discussed later.

Tracing vpm0
86 ST Startup � KMC started
87 TR Started � Script started
88 TR S-ENQ � Enquiry byte sent
89 ST Start � VPM Driver start
90 OP Opened � VPM device open
91 WR 84 bytes � Signon record written
92 TR TIMEOUT � No response to enquiry
93 TR S-ENQ � Enquiry byte sent
94 TR TIMEOUT � No response
95 TR S-ENQ � Enquiry byte sent
96 TR TIMEOUT � No response
97 TR S-ENQ � Enquiry byte sent
98 TR TIMEOUT � No response
99 TR S-ENQ � Enquiry byte sent
0 TR TIMEOUT � No response
1 TR S-ENQ � Enquiry byte sent
2 TR TIMEOUT � No response
3 RR Buf � Receive buffer returned
4 RD 1 bytes � 1 byte read (error)
5 SC Exit(0) � Script exits normally
6 CL Clean � Cleanup done
7 ST Stopped � KMC stopped
8 CL Closed � VPM device closed

The above sequence will be repeated approximately every minute until a positive response is received from
the host. During that minute theRJEsubsystem is dormant, and therjestatcommand will report thatIBM is
not responding. When this occurs, either theIBM machine is not available, down, line not started, etc., or

- 17 -

there is a communications problem somewhere from where theKMC transmits data to where it receives
data. TheRJE administrator should first verify that theIBM machine is up, and the communications line
has been started. If so, a hardware trace of the communications line should be done to aid in detecting the
problem.

7.5.3 Transmitting and Receiving

This example shows trace output from the start of job transmission through its return. For simplicity, only
one job is being transmitted and returned.

Tracing vpm0
94 TR R-ACK � Handshaking
95 TR S-ACK � .
96 TR R-ACK � .
97 TR S-ACK � Handshaking
98 WR 4 bytes � Open reader request written
99 TR R-ACK � Handshaking
0 TR S-BLK � Sent open request block
1 TR R-OKBLK � Received block (grant)
2 RX Buf � Transmit buffer returned
3 RR Buf � Receive buffer returned
4 TR S-ACK � Block acknowledged
5 RD 7 bytes � Read 7 bytes (grant)
6 TR R-ACK � Handshaking
7 TR S-ACK � Handshaking
8 WR 481 bytes � First block written
9 WR 470 bytes � Second block written
10 TR R-ACK � Handshaking
11 TR S-BLK � First block sent
12 TR R-ACK � Block acknowledged
13 RX Buf � Transmit buffer returned
14 WR 470 bytes � Third block written
15 TR S-BLK � Second block sent
16 TR R-OKBLK � Received block (on reader msg)
17 RX Buf � Transmit buffer returned
18 RR Buf � Receive buffer returned
19 WR 470 bytes � Fourth block written
20 RD 66 bytes � Read 66 bytes (on reader msg)
21 TR S-BLK � Third block sent
22 TR R-ACK � Block acknowledged
23 RX Buf � Transmit buffer returned
24 WR 147 bytes � Fifth block written
25 TR S-BLK � Fourth block sent
26 TR R-ACK � Block acknowledged
27 RX Buf � Transmit buffer returned

. �

. � More of the same

. �

93 TR R-ACK � Handshaking
94 TR S-ACK � Handshaking
95 TR R-OKBLK � Received block (request)
96 RR Buf � Receive buffer returned
97 TR S-ACK � Block acknowledged
98 RD 7 bytes � Read open printer request
99 TR R-ACK � Handshaking
0 TR S-ACK � .

- 18 -

1 TR R-ACK � .
2 TR S-ACK � .
3 TR R-ACK � .
4 TR S-ACK � Handshaking
5 WR 4 bytes � Printer grant written
6 TR R-ACK � Handshaking
7 TR S-BLK � Block sent (grant)
8 TR R-OKBLK � First block received
9 RX Buf � Transmit buffer returned
10 RR Buf � Receive buffer returned
11 TR S-ACK � Block acknowledged
12 RD 64 bytes � Read first block
13 TR R-OKBLK � Second block received
14 RR Buf � Receive buffer returned
15 TR S-ACK � Block acknowledged
16 RD 505 bytes � Read second block
17 TR R-OKBLK � Third block received
18 RR Buf � Receive buffer returned
19 TR S-ACK � Block acknowledged
20 TR R-OKBLK � Fourth block received
21 RR Buf � Receive buffer returned
22 TR S-ACK � Block acknowledged
23 TR R-ACK � Handshaking
24 TR S-ACK � .
25 TR R-ACK � .
26 TR S-ACK � Handshaking
27 RD 470 bytes � Read third block
28 RD 494 bytes � Read fourth block
29 TR R-ACK � Handshaking
30 TR S-ACK � Handshaking

. �

. � And so on

. �

Requests and grants are part of the multi-leaving protocol. Appendix B ofOS/VS MVS JES2 Logic(SY24-
6000-1) describes this protocol in detail. When jobs are being transmitted and received simultaneously, as
in a busierRJE subsystem, much less handshaking is involved. Rather than acknowledging blocks with
ACKs, the protocol allows a block to be returned (this implies acknowledgement of the received block).
The following example shows trace output at a busy time:

tracing vpm0
41 TR R-OKBLK � Received block
42 RX Buf �

43 RR Buf �

44 TR S-BLK � Sent block
45 WR 493 bytes �

46 RD 496 bytes �

47 TR R-OKBLK � Received block
48 RX Buf �

49 RR Buf �

50 RD 65 bytes �

51 WR 4 bytes �

52 TR S-BLK � Sent block
53 TR R-OKBLK � Received block
54 RX Buf �

- 19 -

55 RR Buf �

56 TR S-BLK � Sent block
57 WR 493 bytes �

58 RD 7 bytes �

59 TR R-OKBLK � Received block
60 RX Buf �

61 RR Buf �

62 WR 493 bytes �

63 RD 496 bytes �

64 TR S-BLK � Sent block
65 TR R-OKBLK � Received block

Notice that since there is work to be done on both sides, acknowledgements are implied.

7.5.4 Timeout Error Recovery

This example shows activity resulting from timeouts occurring during normal operation. These timeouts
were caused because the remoteJES3system has performance problems, and occasionally does not respond
in the required three seconds.

Tracing vpm1
27 TR S-ACK � Handshaking
28 TR R-ACK � .
29 TR S-ACK � .
30 TR TIMEOUT � No response
31 TR S-NAK � Not acknowledged
32 TR TIMEOUT � No response
33 TR S-NAK � Not acknowledged
34 TR R-ACK � Response
35 TR S-ACK � Handshaking
36 TR R-ACK � .

. � .

. � .

. � .
54 TR R-ACK � .
55 TR S-ACK � Handshaking
56 TR TIMEOUT � No response
57 TR S-NAK � Not acknowledged
58 TR R-ACK � Response
59 TR S-ACK � Handshaking

.

.

The response to these timeouts are NAKs (not acknowledged).RJEwill respond this way up to six times
before giving up and attempting a reboot. At this timerjestat would report that there are ‘‘Line Errors’’.
NAK is a request to retransmit the previous response.

7.5.5 Communication Line Errors

This example shows trace output from anRJEsubsystem that uses a dial-up connection. The phone line is
noisy and is prone to dropping.

Tracing vpm1
63 TR S-ACK � Handshaking
64 TR R-ACK � .
65 TR S-ACK � .
66 TR R-JUNK � Noise on the line

- 20 -

67 TR S-NAK � Not acknowledged
68 TR R-ACK � Recovery
69 TR S-ACK �

70 TR R-ACK �

71 TR S-ACK �

72 TR TIMEOUT � Line has dropped
73 TR S-NAK � Attempting to recover
74 TR TIMEOUT � .
75 TR S-NAK � .
76 TR TIMEOUT � .
77 TR S-NAK � .
78 TR TIMEOUT � .
79 TR S-NAK � .
80 TR TIMEOUT � .
81 TR S-NAK � .
82 TR TIMEOUT � .
83 TR S-NAK � .
84 RR Buf � Receive buffer returned
85 RD 1 bytes � 1 byte read (error)
86 SC Exit(0) � Script exits
87 CL Clean � Cleanup
88 ST Stopped � KMC Stopped
89 CL Closed � VPM device closed

The error read in the above sequence causesRJE to reboot andrjestat to report line errors. If this type of
thing were to occur frequently, a different method of communication should be used.

7.5.6 Error Responses

As seen in the sections above, the response to most errors is to send aNAK . The only exception is when
starting up (see Section 7.5.2). Whenever aNAK is received on either side, it indicates that the previous
transmission was not properly received. This should be followed by retransmission of the previous data.
Generally, NAKs should not occur frequently, and should be followed by recovery. If errors occur
frequently orNAKs do not cause recovery, the line should be checked for problems.

On someIBM systems, (e.g.,JES2), an I/O error is printed at the system console whenever aNAK is
received. These I/O errors can also be helpful in detecting the problem; however, they will not be discussed
here as they vary with the system. It is assumed that someone inIBM support can assist if needed.

