
RJESTAT(1C) RJESTAT(1C)

NAME

rjestat � RJE status report and interactive status console

SYNOPSIS

rjestat [host] . . . [�shost] [�chost cmd] . . .

DESCRIPTION

Rjestat provides a method of determining the status of an RJE link and of simulating an IBM remote
console (with UNIX features added). When invoked with no arguments, rjestat reports the current
status of all the RJE links connected to to the UNIX system. The options are:

host Print the status of the line to host. Host is the pseudonym for a particular IBM system.
It can be any name that corresponds to one in the first column of the RJE configuration
file.

�shost After all the arguments have been processed, start an interactive status console to
host.

�chost cmd Interpret cmd as if it were entered in status console mode to host. See below for the
proper format of cmd.

In status console mode, rjestat prompts with the host pseudonym followed by : whenever it is
ready to accept a command. Commands are terminated with a new-line. A line that begins with !
is sent to the UNIX shell for execution. A line that begins with the letter q terminates rjestat. All
other input lines are assumed to have the form:

ibmcmd [redirect]

Ibmcmd is any IBM JES or HASP command. Only the super-user or rje login can send commands
other than display or inquiry commands. Redirect is a pipeline or a redirection to a file (e.g., ��>
file�� or �� | grep ...��). The IBM response is written to the pipeline or file. If redirect is not present,
the response is written to the standard output of rjestat.

An interrupt signal (DEL or BREAK) will cancel the command in progress and cause rjestat to return
to the command input mode.

EXAMPLE

The following command reports the status of all the card readers attached to host A, remote 5.
JES2 is assumed.

rjestat �cA ′$du,rmt5  grep RD′

DIAGNOSTICS

The message ��RJE error: ...�� indicates that rjestat found an inconsistency in the RJE system. This
may be transient but should be reported to the site administrator.

FILES

/usr/rje/lines RJE configuration file

resp host response file that exists in the RJE subsystem directory (e.g., /usr/rje1).

SEE ALSO

send(1C), rje(8).
OS/VS2 HASP II Version 4 Operator’s Guide, IBM SRL #GC27-6993. .}f
Operator’s Library: OS/VS2 Reference (JES2), IBM SRL GC38-0210. .}f

1

SEND(1C) SEND(1C)

NAME

send, gath � gather files and/or submit RJE jobs

SYNOPSIS

gath [�ih] file ...

send argument ...

DESCRIPTION

Gath

Gath concatenates the named files and writes them to the standard output. Tabs are expanded
into spaces according to the format specification for each file (see fspec(5)). The size limit and
margin parameters of a format specification are also respected. Non-graphic characters other
than tabs are identified by a diagnostic message and excised. The output of gath contains no tabs
unless the �h flag is set, in which case the output is written with standard tabs (every eighth col­
umn).

Any line of any of the files which begins with ~ is interpreted by gath as a control line. A line
beginning ��~ �� (tilde,space) specifies a sequence of files to be included at that point. A line
beginning ~! specifies a UNIX command; that command is executed, and its output replaces the
~! line in the gath output.

Setting the �i flag prevents control lines from being interpreted and causes them to be output lit­
erally.

A file name of � at any point refers to standard input, and a control line consisting of ~. is a logi­
cal EOF. Keywords may be defined by specifying a replacement string which is to be substituted
for each occurrence of the keyword. Input may be collected directly from the terminal, with several
alternatives for prompting. In fact, all of the special arguments and flags recognized by the send
command are also recognized and treated identically by gath. Several of them only make sense in
the context of submitting an RJE job.

Send

Send is a command-level interface to the RJE subsystems. It allows the user to collect input from
various sources in order to create a run stream consisting of card images, and submit this run
stream for transmission to a host computer.

Possible sources of input to send are: ordinary files, standard input, the terminal, and the output
of a command or shell file. Each source of input is treated as a virtual file, and no distinction is
made based upon its origin. Typical input is an ASCII text file of the sort that is created by the edi­
tor ed(1). An optional format specification appearing in the first line of a file (see fspec(5)) deter­
mines the settings according to which tabs are expanded into spaces. In addition, lines that begin
with ~ are normally interpreted as commands controlling the execution of send. They may be used
to set or reset flags, to define keyword substitutions, and to open new sources of input in the
midst of the current source. Other text lines are translated one-for-one into card images of the
run stream.

The run stream that results from this collection is treated as one job by the RJE subsystems. Send
prints the card count of the run stream, and the queuer that is invoked prints the name of the tem­
porary file that holds the job while it is awaiting transmission. The initial card of a job submitted
to an IBM host must have a // in the first column. The initial card of a job submitted to a UNIVAC

host must begin with a ��@RUN�� or ���run��, etc. Any cards preceding these will be excised. If a
host computer is not specified before the first card of the runstream is ready to be sent, send will
select a reasonable default. In the case of an IBM job, all cards beginning with /*$ will be excised
from the runstream, because they are HASP command cards.

The arguments that send accepts are described below. An argument is interpreted according to
the first pattern that it matches. Preceding a character with \ causes it to loose any special mean­
ing it might otherwise have when matching against an argument pattern.

. Close the current source.

� Open standard input as a new source.

+ Open the terminal as a new source.

2

SEND(1C) SEND(1C)

:spec: Establish a default format specification for included sources,
e.g., :m6t�12:

:message Print message on the terminal.

�:prompt Open standard input and, if it is a terminal, print prompt.

+:prompt Open the terminal and print prompt.

�flags Set the specified flags, which are described below.

+flags Reset the specified flags.

=flags Restore the specified flags to their state at the previous level.

!command Execute the specified UNIX command via the one-line shell, with input redi­
rected to /dev/null as a default. Open the standard output of the com­
mand as a new source.

$line Collect contiguous arguments of this form and write them as consecutive
lines to a temporary file; then have the file executed by the shell. Open the
standard output of the shell as a new source.

@directory The current directory for the send process is changed to directory. The
original directory will be restored at the end of the current source.

~comment Ignore this argument.

?:keyword Prompt for a definition of keyword from the terminal unless keyword has
an existing definition.

?keyword=xx Define the keyword as a two digit hexadecimal character code unless it
already has a non null replacement.

?keyword=string Define the keyword in terms of a replacement string unless it already has a
non null replacement.

=:keyword Prompt for a definition of keyword from the terminal.

keyword=xx Define keyword as a two-digit hexadecimal character code.

keyword=string Define keyword in terms of a replacement string.

host The host machine that the job should be submitted to. It can be any name
that corresponds to one in the first column of the RJE configuration file
(/usr/rje/lines).

file−name Open the specified file as a new source of input.

When commands are executed via $ or ! the shell environment (see environ(7)) will contain the
values of all send keywords that begin with $ and have the syntax of a shell variable.

The flags recognized by send are described in terms of the special processing that occurs when
they are set:

�l List card images on standard output. EBCDIC characters are translated back to ASCII.

�q Do not output card images.

�f Do not fold lower case to upper.

�t Trace progress on diagnostic output, by announcing the opening of input sources.

�k Ignore the keywords that are active at the previous level and erase any keyword defini­
tions that have been made at the current level.

�r Process included sources in raw mode; pack arbitrary 8-bit bytes one per column (80
columns per card) until an EOF.

�i Do not interpret control lines in included sources; treat them as text.

�s Make keyword substitutions before detecting and interpreting control lines.

�y Suppress error diagnostics and submit job anyway.

�g Gather mode, qualifying �l flag; list text lines before converting them to card images.

3

SEND(1C) SEND(1C)

�h Write listing with standard tabs.

�p Prompt with ∗ when taking input from the terminal.

�m When input returns to the terminal from a lower level, repeat the prompt, if any.

�a Make �k flag propagate to included sources, thereby protecting them from keyword sub­
stitutions.

�c List control lines on diagnostic output.

�d Extend the current set of keyword definitions by adding those active at the end of
included sources.

�x This flag guarantees that the job will be transmitted in the order of submission (relative
to other jobs sent with this flag).

Control lines are input lines that begin with ~. In the default mode +ir, they are interpreted
as commands to send. Normally they are detected immediately and read literally. The �s flag
forces keyword substitutions to be made before control lines are intercepted and interpreted.
This can lead to unexpected results if a control line uses a keyword which is defined within an
immediately preceding ~$ sequence. Arguments appearing in control lines are handled
exactly like the command arguments to send, except that they are processed at a nested level
of input.

The two possible formats for a control line are: ��~argument�� and ��~ argument ...��. In the
first case, where the ~ is not followed by a space, the remainder of the line is taken as a single
argument to send. In the second case, the line is parsed to obtain a sequence of arguments
delimited by spaces. In this case the quotes ′ and " may be employed to pass embedded
spaces.

The interpretation of the argument . is chosen so that an input line consisting of ~. is treated
as a logical EOF. The following example illustrates some of the above conventions:

send �

~ argument ...
~.

This sequence of three lines is equivalent to the command synopsis at the beginning of this
description. In fact, the � is not even required. By convention, the send command reads stan­
dard input if no other input source is specified. Send may therefore be employed as a filter
with side-effects.

The execution of the send command is controlled at each instant by a current environment,
which includes the format specification for the input source, a default format specification for
included sources, the settings of the mode flags, and the active set of keyword definitions.
This environment can be altered dynamically. When a control line opens a new source of
input, the current environment is pushed onto a stack, to be restored when input resumes
from the old source. The initial format specification for the new source is taken from the first
line of the file. If none is provided, the established default is used or, in its absence, standard
tabs. The initial mode settings and active keywords are copied from the old environment.
Changes made while processing the new source will not affect the environment of the old
source, with one exception: if �d mode is set in the old environment, the old keyword context
will be augmented by those definitions that are active at the end of the new source.

When send first begins execution, all mode flags are reset, and the values of the shell environ­
ment variables become the initial values for keywords of the same name with a $ prefixed.

The initial reset state for all mode flags is the + state. In general, special processing associ­
ated with a mode N is invoked by flag �N and is revoked by flag +N. Most mode settings have
an immediate effect on the processing of the current source. Exceptions to this are the �r and
�i flags, which apply only to included source, causing it to be processed in an uninterpreted
manner.

A keyword is an arbitrary 8-bit ASCII string for which a replacement has been defined. The
replacement may be another string, or (for IBM RJE only) the hexadecimal code for a single 8-
bit byte. At any instant, a given set of keyword definitions is active. Input text lines are
scanned, in one pass from left to right, and longest matches are attempted between substrings

4

SEND(1C) SEND(1C)

of the line and the active set of keywords. Characters that do not match are output, subject to
folding and the standard translation. Keywords are replaced by the specified hexadecimal
code or replacement string, which is then output character by character. The expansion of
tabs and length checking, according to the format specification of an input source, are delayed
until substitutions have been made in a line.

All of the keywords definitions made in the current source may be deleted by setting the �k
flag. It then becomes possible to reuse them. Setting the �k flag also causes keyword defini­
tions active at the previous source level to be ignored. Setting the +k flag causes keywords at
the previous level to be ignored but does not delete the definitions made at the current level.
The =k argument reactivates the definitions of the previous level.

When keywords are redefined, the previous definition at the same level of source input is lost,
however the definition at the previous level is only hidden, to be reactivated upon return to
that level unless a �d flag causes the current definition to be retained.

Conditional prompts for keywords, ?:A,/p which have already been defined at some higher
level to be null or have a replacement will simply cause the definitions to be copied down to
the current level; new definitions will not be solicited.

Keyword substitution is an elementary macro facility that is easily explained and that appears
useful enough to warrant its inclusion in the send command. More complex replacements are
the function of a general macro processor (m4(1), perhaps). To reduce the overhead of string
comparison, it is recommended that keywords be chosen so that their initial characters are
unusual. For example, let them all be upper case.

Send performs two types of error checking on input text lines. Firstly, only ASCII graphics and
tabs are permitted in input text. Secondly, the length of a text line, after substitutions have
been made, may not exceed 80 bytes for IBM, or 132 bytes for UNIVAC. The length of each line
may be additionally constrained by a size parameter in the format specification for an input
source. Diagnostic output provides the location of each erroneous line, by line number and
input source, a description of the error, and the card image that results. Other routine errors
that are announced are the inability to open or write files, and abnormal exits from the shell.
Normally, the occurrence of any error causes send, before invoking the queuer, to prompt for
positive affirmation that the suspect run stream should be submitted.

For IBM hosts, send is required to translate 8-bit ASCII characters into their EBCDIC equivalents.
The conversion for 8-bit ASCII characters in the octal range 040-176 is based on the character
set described in ��Appendix H�� of IBM System/370 Principles of Operation (IBM SRL GA22-
7000). Each 8-bit ASCII character in the range 040-377 possesses an EBCDIC equivalent into
which it is mapped, with five exceptions: ~ into ¬, 0345 into ~, 0325 into , 0313 into  ,
0177 (DEL) is illegal. In listings requested from send and in printed output returned by the
subsystem, the reverse translation is made with the qualification that EBCDIC characters that do
not have valid 8-bit ASCII equivalents are translated into ^. UNIVAC hosts, on the other hand,
operate in ASCII code, and any translations between ASCII and field-data are made, in accor­
dance with the UNIVAC standard, by the host computer.

Additional control over the translation process is afforded by the �f flag and hexadecimal
character codes. As a default, send folds lower-case letters into upper case. For UNIVAC RJE it
does more: the entire ASCII range 0140-0176 is folded into 0100-0136, so that ‘, for example,
becomes @. In either case, setting the �f flag inhibits any folding. Non-standard character
codes are obtained as a special case of keyword substitution.

SEE ALSO

m4(1), orjestat(1C), rjestat(1C), sh(1), fspec(5), ascii(7), hasp(8), rje(8), uvac(8).
Guide to IBM Remote Job Entry for PWB/UNIX Users by A. L. Sabsevitz and E. J. Finger.
UNIX Remote Job Entry User’s Guide by K. A. Kelleman.

BUGS

Standard input is read in blocks, and unused bytes are returned via lseek(2). If standard input is a
pipe, multiple arguments of the form � and �:prompt should not be used, nor should the logical
EOF (~.). delim @@

5

VPMC(1C) VPMC(1C)

NAME

vpmc � compiler for the virtual protocol machine

SYNOPSIS

vpmc [�m] [�r] [�c] [�x] [�s sfile] [�l lfile] [�i ifile] [�o ofile] file

DESCRIPTION

Vpmc is the compiler for a language that is used to describe communications link protocols. The
output of vpmc is a load module for the virtual protocol machine (VPM), which is a software con­
struct for implementing communications link protocols (e.g., BISYNC) on the DEC KMC11 micropro­
cessor. VPM is implemented by an interpreter in the KMC11 which cooperates with a driver in the
UNIX host computer to transfer data over a communications link in accordance with a specified link
protocol. UNIX user processes transfer data to or from a remote terminal or computer system
through VPM using normal UNIX open, read, write, and close operations. The VPM program in the
KMC11 provides error control and flow control using the conventions specified in the protocol.

The language accepted by vpmc is essentially a subset of C; the implementation of vpmc uses the
RATFOR preprocessor (ratfor(1)) as a front end; this leads to a few minor differences, mostly syn­
tactic.

There are two versions of the interpreter. The appropriate version for a particular application is
selected by means of the �i option. The BISYNC version (�i bisync) supports half-duplex,
character-oriented protocols such as the various forms of BISYNC. The HDLC version (�i hdlc)
supports full-duplex, bit-oriented protocols such as HDLC. The communications primitives used
with the BISYNC version are character-oriented and blocking; the primitives used with the HDLC ver­
sion are frame-oriented and non-blocking.

Options

The meanings of the command-line options are:

�m Use m4(1) instead of cpp as the macro preprocessor.
�r Produce RATFOR output on the standard output and suppress the remaining compiler

phases.
�c Compile only (suppress the assembly and linking phases).
�x Retain the intermediate files used for communication between passes.
�s sfile Save the generated VPM assembly language on file sfile.
�l lfile Produce a VPM assembly-language listing on file lfile.
�i ifile Use the interpreter version specified by ifile (default bisync).
�o ofile Write the executable object file on file ofile (default a.out).

These options may be given in any order.

Programs

Input to vpmc consists of a (possibly null) sequence of array declarations, followed by one or more
function definitions. The first defined function is invoked (on command from the UNIX VPM driver)
to begin program execution.

Functions

A function definition has the following form:

function name()
statement_list
end

Function arguments (formal parameters) are not allowed. The effect of a function call with argu­
ments can be obtained by invoking the function via a macro that first assigns the value of each
argument to a global variable reserved for that purpose. See EXAMPLES below.

A statement_list is a (possibly null) sequence of labeled statements. A labeled_statement is a
statement preceded by a (possibly null) sequence of labels. A label is either a name followed by a
colon (:) or a decimal integer optionally followed by a colon.

The statements that make up a statement list must be separated by semicolons (;). (A semicolon
at the end of a line can usually be omitted; refer to the description of RATFOR for details.) Null
statements are allowed.

6

VPMC(1C) VPMC(1C)

Statement Syntax

The following types of statements are allowed:

expression
lvalue=expression
lvalue+=expression
lvalue�=expression
lvalue =expression
lvalue&=expression
lvalue^=expression
lvalue<<=expression
lvalue>>=expression
if(expression)statement
if(expression)statement else statement
while(expression)statement
for(statement; expression; statement)statement
repeat statement
repeat statement until expression
break
next
switch(expression){case_list}
return(expression)
return
goto name
goto decimal_constant
{statement_list}

repeat is equivalent to the do keyword in C; next is equivalent to continue.

A case_list is a sequence of statement lists, each of which is preceded by a label of the form:

case constant:

The label for the last statement_list in a case_list may be of the form:

default:

Unlike C, RATFOR supplies an automatic break preceding each new case label.

Expression Syntax

A primary_expression (abbreviated primary) is an lvalue or a constant. An lvalue is one of the fol­
lowing:

name
name[constant]

A unary_expression (abbreviated unary) is one of the following:

primary
name()
system_call
++ lvalue
��lvalue
(expression)
!unary

~unary

The following types of expressions are allowed:

unary
unary+primary
unary�primary
unary primary
unary&primary
unary&~primary
unary^primary
unary<<primary

7

VPMC(1C) VPMC(1C)

unary>>primary
unary==primary
unary!=primary
unary>primary
unary<primary
unary>=primary
unary<=primary

Note that the right operand of a binary operator can only be a constant, a name, or a name with a
constant subscript.

System Calls

A VPM program interacts with a communications device and a driver in the host computer by means
of system calls (primitives).

The following primitives are available only in the BISYNC version of the interpreter:

crc16(primary)
The value of the primary expression is combined with the cyclic redundancy check-sum at
the location passed by a previous crcloc system call. The CRC-16 polynomial @(x sup 16
+ x sup 15 + x sup 2 + 1)@ is used for the check-sum calculation.

crcloc(name)
The two-byte array starting at the location specified by name is cleared. The address of
the array is recorded as the location to be updated by subsequent crc16 system calls.

get(lvalue)
Get a byte from the current transmit buffer. The next available byte, if any, is copied into
the location specified by lvalue. The returned value is zero if a byte was obtained, other­
wise it is non-zero.

getrbuf(name)
Get (open) a receive buffer. The returned value is zero if a buffer is available, otherwise it
is non-zero. If a buffer is obtained, the buffer parameters are copied into the array speci­
fied by name. The array should be large enough to hold at least three bytes. The meaning
of the buffer parameters is driver-dependent. If a receive buffer has previously been
opened via a getrbuf call but has not yet been closed via a call to rtnrbuf, that buffer
is reinitialized and remains the current buffer.

getxbuf(name)
Get (open) a transmit buffer. The returned value is zero if a buffer is available, otherwise it
is non-zero. If a buffer is obtained, the buffer parameters are copied into the array speci­
fied by name. The array should be large enough to hold at least three bytes. The meaning
of the buffer parameters is driver-dependent. If a transmit buffer has previously been
opened via a getxbuf call but has not yet been closed via a call to rtnxbuf, that buffer
is reinitialized and remains the current buffer.

put(primary)
Put a byte into the current receive buffer. The value of the primary expression is inserted
into the next available position, if any, in the current receive buffer. The returned value is
zero if a byte was transferred, otherwise it is non-zero.

rcv(lvalue)
Receive a character. The process delays until a character is available in the input silo. The
character is then moved to the location specified by lvalue and the process is reactivated.

rsom(constant)
Skip to the beginning of a new receive frame. The receiver hardware is cleared and the
value of constant is stored as the receive sync character. This call is used to synchronize
the local receiver and remote transmitter when the process is ready to accept a new receive
frame.

rtnrbuf(name)
Return a receive buffer. The original values of the buffer parameters for the current receive
buffer are replaced with values from the array specified by name. The current receive
buffer is then released to the driver.

8

VPMC(1C) VPMC(1C)

rtnxbuf(name)
Return a transmit buffer. The original values of the buffer parameters for the current
transmit buffer are replaced with values from the array specified by name. The current
transmit buffer is then released to the driver.

xeom(constant)
Transmit end-of-message. The value of the constant is transmitted, then the transmitter is
shut down.

xmt(primary)
Transmit a character. The value of the primary expression is transmitted over the commu­
nications line. If the output silo is full, the process waits until there is room in the silo.

xsom(constant)
Transmit start-of-message. The transmitter is cleared, then the value of constant is trans­
mitted six times. This call is used to synchronize the local transmitter and the remote
receiver at the beginning of a frame.

The following primitives are available only with the HDLC version of the interpreter:

abtxfrm()
The current transmission, if any, is aborted, if possible, by sending a frame-abort sequence
(seven one bits, followed immediately by a terminating flag). This operation is not feasible
with some hardware interfaces, in which case this primitive is a no-operation.

getxfrm(primary)
Get a transmit buffer. If the transmit-buffer queue is not empty, the buffer at the head of
the queue is removed from the queue and attached to the sequence number specified by
the value of the primary expression. If the sequence number is greater than seven or the
sequence number already has a buffer attached, the process is terminated in error. The
returned value is zero if a buffer was obtained, otherwise non-zero.

rcvfrm(name)
Get a completed receive frame. If the queue of completed receive frames is non-empty, the
frame at the head of the queue is removed and becomes the current receive frame. If a
frame is obtained, the first five bytes of the frame are copied into the array specified by
name. The returned value is true (non-zero) if a frame was obtained; otherwise, it is
false (zero). The rightmost four bits of the returned value indicate the frame length as
follows: if the value of the rightmost four bits is equal to fifteen, the frame length is greater
than or equal to 15; otherwise the frame length is equal to the value of the rightmost four
bits. The frame length includes the two CRC bytes at the end of the frame and any control
information at the beginning of the frame. Bytes following the first two bytes of the frame,
but not including the two CRC bytes, are copied into a receive buffer, if one is available at
the time the frame is received. Bit 020 of the returned value is zero if a receive buffer was
available, otherwise non-zero. The values of the leftmost three bits of the returned value
are currently unspecified. If a frame was obtained, the first five bytes of the frame are
copied into the array specified by name. Frames with errors are discarded; a count is kept
for each type of error. Frames may be discarded for any of the following reasons: (1) CRC

error, (2) frame too short (less than four bytes), (3) frame too long (buffer size exceeded),
or (4) no receive buffer available. If a frame with a buffer attached was previously obtained
with rcvfrm, but the buffer has not been released to the driver with rtnrfrm, that
buffer is returned to the queue of empty receive buffers. At most one receive frame with
no buffer attached is retained by the interpreter; if a new frame arrives before the frame
with no buffer attached has been obtained with rcvfrm, the new frame is discarded.

rtnrfrm()
Return a receive buffer. The current receive buffer (the one obtained by the most recent
rcvfrm primitive) is returned to the driver. If there is no current receive buffer, the pro­
cess is terminated in error.

rsxmtq()
Reset the transmit-buffer queue. The sequence number assignment is removed from all
transmit buffers. If a transmission is currently in progress, the transmission is aborted, if
possible.

9

VPMC(1C) VPMC(1C)

rtnxfrm(primary)
Return a transmit buffer. The transmit buffer currently attached to the sequence number
specified by the value of the primary is returned to the driver and the sequence number
assignment is removed from that buffer. If the specified sequence number does not have a
buffer attached, the process is terminated in error. Transmit buffers must be returned in
the same sequence in which they were obtained, otherwise the process is terminated in
error.

setctl(name,primary)
Specify transmit-control information. The number of bytes specified by the primary are
copied from the array specified by name and saved for use with subsequent xmtfrm or
xmtctl primitives. If the transmitter is currently busy, the process is terminated in error.

xmtbusy()
Test for transmitter busy. If a frame is currently being transmitted, the returned value is
true (non-zero); otherwise the returned value is false (zero).

xmtctl()
Transmit a control frame. If a transmission is not already in progress, a new transmission
is initiated. The transmitted frame will contain the control information specified by the
most recent setctl primitive, followed by a two-byte CRC. The CRC-CCITT polynomial @(x
sup 16 + x sup 12 + x sup 5 + 1)@ is used for the CRC calculation. The returned value is
zero if a new transmission was initiated, otherwise non-zero.

xmtfrm(primary)
Transmit an information frame. If a transmission is not already in progress, a new trans­
mission is initiated. The transmitted frame will contain the control information specified by
the most recent setctl primitive, followed by the contents of the buffer which is cur­
rently attached to the sequence number specified by the value of the primary expression,
followed by a two-byte CRC. The CRC-CCITT polynomial @(x sup 16 + x sup 12 + x sup 5 +
1)@ is used for the CRC calculation. The returned value is zero if a new transmission was
initiated, otherwise non-zero. If the sequence number is greater than seven or the
sequence number does not have a buffer attached, the process is terminated in error.

The following primitives are available with all versions of the interpreter:

dsrwait()
Wait for modem-ready and then set modem-ready mode. The process delays until the
modem-ready signal from the modem interface is asserted. If the modem-ready signal
subsequently drops, the process is terminated. If dsrwait is never invoked, the
modem-ready signal is ignored.

exit(primary)
Terminate execution. The process is halted and the value of the primary expression is
passed to the driver.

getcmd(name)
Get a command from the driver. If a command has been received from the driver since the
last call to getcmd, four bytes of command information are copied into the array specified
by name and a value of true (non-zero) is returned. If no command is available, the
returned value is false (zero).

pause()
Return control to the dispatcher. This primitive informs the dispatcher that the virtual pro­
cess may be suspended until the next occurrence of an event that might affect the state of
the protocol for this line. Examples of such events are: (1) completion of an output trans­
fer, (2) completion of an input transfer, (3) timer expiration, and (4) a buffer-in command
from the driver. In a multi-line implementation, the pause primitive allows the process
for a given line to give up control to allow the processor to service another line.

rtnrpt(name)
Return a report to the driver. Four bytes from the array specified by name are transferred
to the driver. The process delays until the transfer is complete.

testop(primary)
Test for odd parity. The returned value is true (non-zero) if the value of the primary

10

VPMC(1C) VPMC(1C)

expression has odd parity, otherwise the returned value is false (zero).

timeout(primary)
Schedule or cancel a timer interrupt. If the value of the primary expression is non-zero,
the current values of the program counter and stack pointer are saved and a timer is loaded
with the value of primary. The system call then returns immediately with a value of false
(zero) as the returned value. The timer is decremented each tenth of a second thereafter.
If the timer is decremented to zero, the saved values of the program counter and stack
pointer are restored and the system call returns with a value of true (non-zero). The
effect of the timer interrupt is to return control to the code immediately following the
timeout system call, at which point a non-zero return value indicates that the timer has
expired. The timeout system call with a non-zero argument is normally written as the
condition part of an if statement. A timeout system call with a zero argument value
cancels all previous timeout requests, as does a return from the function in which the
timeout system call was made. A timeout system call with a non-zero argument value
overrides all previous timeout requests. The maximum permissible value for the argu­
ment is 255, which gives a timeout period of 25.5 seconds.

timer(primary)
Start a timer or test for timer expiration. If the value of the primary is non-zero, a soft­
ware timer is loaded with the value of the primary and a value of true (non-zero) is
returned. The timer is decremented each tenth of a second thereafter until it reaches zero.
If the value of the primary is zero, the returned value is the current value of the timer; this
will be true (non-zero) if the value of the timer is currently non-zero, otherwise false
(zero). The timer used by this primitive is different from the timer used by the timeout
primitive.

trace(primary[,primary])
The values of the two primary expressions and the current value of the script location
counter are passed to the driver. If the second primary is omitted, a zero is used instead.
The process delays until the values have been accepted by the host computer.

Constants

A constant is a decimal, octal, or hexadecimal integer, or a single character enclosed in single
quotes. A token consisting of a string of digits is taken to be an octal integer if the first digit is a
zero, otherwise the string is interpreted as a decimal integer. If a token begins with 0x or 0X, the
remainder of the token is interpreted as a hexadecimal integer. The hexadecimal digits include a
through f or, equivalently, A through F.

Variables

Variable names may be used without having been previously declared. All names are global. All
values are treated as 8-bit unsigned integers.

Arrays of contiguous storage may be allocated using the array declaration:

array name[constant]

where constant is a decimal integer. Elements of arrays can be referenced using constant sub­
scripts:

name[constant]

Indexing of arrays assumes that the first element has an index of zero.

Names

A name is a sequence of letters and digits; the first character must be a letter. Upper- and lower-
case letters are considered to be distinct. Names longer than 31 characters are truncated to 31
characters. The underscore (_) may be used within a name to improve readability, but is dis­
carded by RATFOR.

Preprocessor Commands

If the �m option is omitted, comments, macro definitions, and file inclusion statements are written
as in C. Otherwise, the following rules apply:

1. If the character # appears in an input line, the remainder of the line is treated as a comment.

2. A statement of the form:

11

VPMC(1C) VPMC(1C)

define(name,text)

causes every subsequent appearance of name to be replaced by text. The defining text
includes everything after the comma up to the balancing right parenthesis; multi-line defini­
tions are allowed. Macros may have arguments. Any occurrence of $n within the replacement
text for a macro will be replaced by the nth actual argument when the macro is invoked.

3. A statement of the form:

include(file)

inserts the contents of file in place of the include command. The contents of the included
file is often a set of definitions.

EXAMPLES

These examples require the use of the �m option.

The function defined below transmits a frame in transparent BISYNC.
A transmit buffer must be obtained with getxbuf before the function
is invoked.
#
Define symbolic constants:
#
define(DLE,0x10)
define(ETB,0x26)
define(PAD,0xff)
define(STX,0x02)
define(SYNC,0x32)
#
Define a macro with an argument:
#
define(xmtcrc,{crc16($1); xmt($1);})
#
Declare an array:
#
array crc[2];
#
Define the function:
#
function xmtblk()

crcloc(crc);
xsom(SYNC);
xmt(DLE);
xmt(STX);
while(get(byte)==0){

if(byte == DLE)
xmt(DLE);

xmtcrc(byte);
}
xmt(DLE);
xmtcrc(ETB);
xmt(crc[0]);
xmt(crc[1]);
xeom(PAD);

end
#
The following example illustrates the use of macros to simulate a
function call with arguments.
#
The macro definition:
#
define(xmtctl,{c=$1;d=$2;xmtctl1()})
#

12

VPMC(1C) VPMC(1C)

The function definition:
#
function xmtctl1()

xsom(SYNC);
xmt(c);
if(d!=0)

xmt(d);
xeom(PAD);

end
#
Sample invocation:
#
function test()

xmtctl(DLE,0x70);
end

FILES

sas_temp� temporaries
/tmp/sas_ta?? temporary
/tmp/sas_tb?? temporary
/usr/lib/vpm/pass� compiler phases
/usr/lib/vpm/pl compiler phase
/usr/lib/vpm/vratfor compiler phase
/lib/cpp preprocessor
/usr/bin/m4 preprocessor
/bin/kasb KMC11-B assembler
/usr/lib/vpm/bisync/� interpreter source for the BISYNC interpreter
/usr/lib/vpm/hdlc/� interpreter source for the HDLC interpreter

SEE ALSO

m4(1), ratfor(1), vpmstart(1C), vpm(4).
C Reference Manual by D. M. Ritchie.
RATFOR�A Preprocessor for a Rational Fortran by B. W. Kernighan.
The M4 Macro Processor by B. W. Kernighan and D. M. Ritchie.
Software Tools by B. W. Kernighan and P. J. Plauger (pp. 28-30).

13

VPM(4) VPM(4)

NAME

vpm � The Virtual Protocol Machine

DESCRIPTION

This entry describes a particular kind of special file and gives an introduction to the Virtual Proto­
col Machine (VPM).

The VPM is a software construct for implementing link protocols on the KMC11 in a high-level lan­
guage. This is accomplished by a compiler that runs on UNIX and that translates a high-level lan­
guage description of a protocol into an intermediate language that is interpreted by an interpreter
running in the KMC11.

The VPM driver is functionally split into two parts: a top VPM device and a bottom VPM device. The
top device may be modified or replaced to suit particular applications; the bottom device interfaces
with the VPM interpreter using the KMC driver. When using the mknod command to make a direc­
tory entry and corresponding i-node for a VPM special file, the minor device number identifies the
top, bottom, and physical KMC devices to be used for this special file. The two most significant
bits of the minor device number denote the physical KMC device; the next two bits denote the VPM

bottom device; the four least significant bits denote the VPM top device. For example, if top device
1 is to be used with bottom device 2, which in turn is to be used with KMC device 3, the minor
device number would be 0341(octal).

UNIX user processes transfer data to or from a remote terminal or computer system through VPM

using normal open, read, write, and close operations. Flow control and error recovery are pro­
vided by the protocol description residing in the KMC11.

The VPM software consists of six components:

1. vpmc(1C): compiler for the protocol description language; it runs on UNIX.
2. VPM interpreter: a KMC11 program that controls the overall operation of the KMC11

and interprets the protocol script.
3. vpm.c: a UNIX driver that provides the interface to the VPM.
4. vpmstart(1C): a UNIX command that copies a load module into the KMC11 and starts

it.
5. vpmsnap(1C): a UNIX command that prints a time-stamped event trace while the

protocol is running.
6. vpmtrace(1C): a UNIX command that prints an event trace for debugging purposes

while the protocol is running.

The VPM open for reading-and-writing is exclusive; opens for reading-only or writing-only are not.
The VPM open checks that the correct interpreter is running in the KMC11, then sends a RUN com­
mand to the interpreter (causing it to start interpreting the protocol script), and supplies a 512-
byte receive buffer to the interpreter.

The VPM read returns either the number of bytes requested or the number remaining in the current
receive buffer, whichever is less. Bytes remaining in a receive buffer are used to satisfy subse­
quent reads. The VPM write copies the user data into 512-byte system buffers and passes them to
the VPM interpreter in the KMC11 for transmission.

The VPM close arranges for the return of system buffers and for a general cleanup when the last
transmit buffer has been returned by the interpreter.

The user command vpmtrace(1C) reads the trace driver and prints event records. While this com­
mand is executing, the VPM driver will generate a number of event records, allowing the activity of
the VPM driver and protocol script to be monitored for debugging purposes. The system functions
vpmopen, vpmread, vpmwrite, and vpmclose generate event records (identified respectively by o,
r, w, and c). Calls to the vpmc(1C) primitive trace(arg1,arg2) cause the VPM interpreter to pass
arg1 and arg2 along with the current value of the script location counter to the VPM driver, which
generates an event record identified by a T. Each event record is structured as follows:

struct event {
short e_seqn; /�sequence number�/
char e_type; /�record identifier�/
char e_dev; /�minor device number�/
short e_short1; /�data�/

14

VPM(4) VPM(4)

short e_short2; /�data�/
}

When the script terminates for any reason, the driver is notified and generates an event record
identified by an E. This record also contains the minor device number, the script location counter,
and a termination code defined as follows:

0 Normal termination; the interpreter received a halt command from the driver.
1 Undefined virtual-machine operation code.
2 Script program counter out of bounds.
3 Interpreter stack overflow or underflow.
4 Jump address not even.
5 UNIBUS error.
6 Transmit buffer has an odd address; the driver tried to give the interpreter too many

transmit buffers; or a get or rtnxbuf was executed while no transmit buffer was
open, i.e., no getxbuf was executed prior to the get or rtnxbuf.

7 Receive buffer has an odd address; the driver tried to give the interpreter too many
receive buffers; or a put or rtnrbuf was executed while no receive buffer was open,
i.e., no getrbuf was executed prior to the get or rtnxbuf.

8 The script executed an exit.
9 A crc16 was executed without a preceding crcloc execution.

10 Interpreter detected loss of modem-ready signal.
11 Transmit-buffer sequence-number error.
12 Command error; an invalid command or an improper sequence of commands was

received from the driver.
13 Not used.
14 Invalid transmit state.
15 Invalid receive state.
16 Not used.
17 Xmtctl or setctl attempted while transmitter was still busy.
18 Not used.
19 Same as error code 6.
20 Same as error code 7.
21 Script to large.
22 Used for debugging the interpreter.
23 The driver�s OK-check has timed out.

SEE ALSO

vpmc(1C), vpmstart(1C), trace(4).

15

PNCH(5) PNCH(5)

NAME

pnch � file format for card images

DESCRIPTION

The PNCH format is a convenient representation for files consisting of card images in an arbitrary
code.

A PNCH file is a simple concatenation of card records. A card record consists of a single control
byte followed by a variable number of data bytes. The control byte specifies the number (which
must lie in the range 0-80) of data bytes that follow. The data bytes are 8-bit codes that consti­
tute the card image. If there are fewer than 80 data bytes, it is understood that the remainder of
the card image consists of trailing blanks.

16

RJE(8) RJE(8)

NAME

rje � RJE (Remote Job Entry) to IBM

SYNOPSIS

/usr/rje/rjeinit
/usr/rje/rjehalt

DESCRIPTION

RJE is the communal name for a collection of programs and a file organization that allows a UNIX

system, equipped with a KMC11-B, KMC11 driver, and associated Virtual Protocol Machine (VPM)
software, to communicate with IBM�s Job Entry Subsystems by mimicking an IBM 360 remote multi­
leaving work station.

Implementation.

RJE is initiated by the command rjeinit and is terminated gracefully by the command rjehalt. While
active, RJE runs in the background and requires no human supervision. It quietly transmits, to the
IBM system, jobs that have been queued by the send(1C) command, and operator requests that
have been entered by the rjestat(1C) command. It receives, from the IBM system, print and punch
data sets and message output. It enters the data sets into the proper UNIX directory and notifies
the appropriate user of their arrival. It scans the message output to maintain a record on each of
its jobs. It also makes these messages available for public inspection, so that rjestat(1C), in partic­
ular, may extract responses.

Unless otherwise specified, all files and commands described below reside in directory /usr/rje
(first exceptions: send and rjestat).

There are two sources of data to be transmitted by RJE from UNIX to an IBM System/370. In both
cases, the data is organized as files in the /usr/rje/squeue directory. The first are files
named co∗ which are created by the enquiry command rjestat(1C). The second source, containing
the bulk of the data, are files named rd∗ or sq∗ which have been created by send and queued by
the program rjeqer . On completion of processing send invokes rjeqer . Rjeqer and rjestat inform
the program rjexmit that a file has been queued via the file joblog. Upon successful transmis­
sion of the data to the IBM machine, rjexmit removes the queued file. As files are transmitted and
received, the program rjedisp writes an entry containing the date, time, file name, logname, and
number of records in the file acctlog, if it exists. This file can be used for local logging or
accounting information, but is not used elsewhere by RJE. The use of this information is up to the
RJE administrator.

Each time rjeinit is invoked, the joblog file is truncated and recreated from the contents of the
/usr/rje/squeue directory. During this time, rjeinit prevents simultaneous updating of the
joblog file.

Output from the IBM system is classified as either a print data set, a punch data set, or message
output. Print output is converted to an ASCII text file, with standard tabs. Form feeds are sup­
pressed, but the last line of each page is distinguished by the presence of an extraneous trailing
space. Punch output is converted to pnch(5) format. This classification and both conversions
occur as the output is received. Files are moved or copied into the appropriate user�s directory
and assigned the name prnt∗ or pnch∗, respectively, or placed into user directories under user-
specified names, or used as input to programs to be automatically executed, as specified by the
user. This process is driven by the ��usr=...�� specification. RJE retains ownership of these files and
permits read-only access to them. Message output is digested by RJE immediately and is not
retained.

A record is maintained for each job that passes through RJE. Identifying information is extracted
contextually from files transmitted to and received from the IBM system. This information is stored
and used by the rjedisp program for IBM job acknowledgements and delivery of output files.

The IBM system automatically returns an acknowledgement message for each job it receives. Other
status messages are returned in response to enquiries entered by users. All messages received by
RJE are appended to the resp file. The resp file is automatically truncated when it reaches
70,000 bytes. Each enquiry is preceded and followed by an identification card image of the form
��$UX<process id>��. The IBM system will echo this back as an illegal command. The appearance
of process ids in the response stream permits responses to be passed on to the proper users.

17

RJE(8) RJE(8)

While it is active, RJE occupies at least the three process slots that are appropriated by rjeinit.
These slots are used to run rjexmit, the transmitter, rjerecv, the receiver, and rjedisp , the dis­
patcher. These three processes are connected by pipes. The function of each is as follows:

rjexmit
Cycles repetitively, looking for data to transmit to the IBM system. After transmission,
rjexmit passes an event notice to rjedisp . If rjexmit encounters a stop file, (created by
rjehalt), it exits normally. In the case of error termination, rjexmit reboots RJE by executing
rjeinit.

rjerecv
Cycles repetitively, looking for data returning from the IBM machine. Upon receipt of data,
rjerecv notifies either rjexmit or rjedisp of the event (transfer information is sometimes
passed to rjexmit). Rjerecv exits normally at the first appropriate moment when it encoun­
ters the file stop, or exits reluctantly when it encounters a run of errors.

rjedisp
Follows up event notices by directing output files, updating records, and notifying users.
Rjedisp references the system files /etc/passwd and /etc/utmp to correlate user
names, numeric ids, and terminals. Termination of rjerecv causes rjedisp to exit also.

Rjeinit has the capability of dialing any remote IBM system with the proper hardware and software
configuration.

Most RJE files and directories are protected from unauthorized tampering. The exception is the
spool directory. It is used by send(1C) to create temporary files in the correct file system.
Rjeqer and rjestat(1C), the user�s interfaces to RJE, operate in setuid mode to contribute the neces­
sary permission modes.

Administration.

Some minimal oversight of each RJE subsystem is required. The RJE mailbox should be inspected
and cleaned out periodically. The job directory should also be checked. The only files placed
there are output files whose destination file systems are out of space. Users should be given a
short period of time (say, a day or two), and then these files should be removed.

The configuration table /usr/rje/lines is accessed by all components of RJE. Each line of the
table (maximum of 8) defines an RJE connection. Its seven columns may be labeled host, system,
directory, prefix, device, peripherals and parameters. These columns are described as follows:

host
The name of a remote IBM computer (e.g., A B C). This string can be up to 5 characters.

system
The name of a UNIX system. This name should be the same as the system name from
uname(1).

directory
This is the directory name of the servicing RJE subsystem (e.g., /usr/rje1).

prefix
This is the string prefixed (redundantly) to several crucial files and programs in
directory (e.g., rje1, rje2, rje3).

device
This is the name of the controlling VPM device, with /dev/ excised.

peripherals
This field contains information on the logical devices (readers, printers, punches) used by
RJE. Each subfield is separated by :, and is described as follows:

(1) Number of logical readers.
(2) Number of logical printers.
(3) Number of logical punches.

Note: the number of peripherals specified for an RJE subsystem must agree with the num­
ber of peripherals which have been described on the remote machine for that line.

18

RJE(8) RJE(8)

parameters
This field contains information on the type of connection to make. Each subfield is sepa­
rated by :. Any or all fields may be omitted; however, the fields are positional. All but
trailing delimiters must be present. For example, in

1200:512:::9-555-1212
subfields 3 and 4 are missing, but the delimiters are present. Each subfield is defined as
follows:

(1) space
This subfield specifies the amount of space (S) in blocks that RJE tries to maintain on
file systems it touches. The default is 0 blocks. Send will not submit jobs and
rjeinit issues a warning when less than 1.5S blocks are available; rjerecv stops
accepting output from the host when the capacity falls to S blocks; RJE becomes dor­
mant, until conditions improve. If the space on the file system specified by the user
on the ��usr=�� card would be depleted to a point below S, the file will be put in the
job subdirectory of the connection�s home directory, rather than in the place that
the user requested.

(2) size
This subfield specifies the size in blocks of the largest file that can be accepted from
the host without truncation taking place. The default is no truncation.

(3) badjobs
This subfield specifies what to do with undeliverable returning jobs. If an output file
is undeliverable for any reason other than file system space limitations (e.g., miss­
ing or invalid ��usr=�� card) and this subfield contains the letter y, the output will be
retained in the job subdirectory of the home directory, and login rje is notified.
If this subfield contains an n or has any other value, undeliverable output will be
discarded. The default is n.

(4) console
This subfield specifies the status of the interactive status terminal for this line. If
the subfield contains an i, all console status facilities are inhibited (e.g., rjestat(1C)
will not behave like a status terminal). In all cases, the normal non-interactive uses
of rjestat(1C) will continue to function. The default is y.

(5) dial−up
This subfield contains a telephone number to be used to call a host machine. The
telephone number may contain the digits 0 thru 9 and the character � which denotes
a pause. If the telephone number is not present, no dialing is attempted and a
leased line is assumed.

Sign-on is controlled by the existence of a signon file in the home directory. If this file is pre­
sent, its contents are sent as a sign-on message to the host system. If this file does not exist, a
blank card is sent. Sign-off is controlled in the same way, except that the signoff file is sent by
rjehalt if it exists. If the signoff file does not exist, a ��/∗signoff�� card is sent. These files
should be ASCII text and no more than 80 characters.

Send(1C) and rjestat(1C) select an available connection by indexing on the host field of the con­
figuration table. RJE programs index on the prefix field. A subordinate directory, sque, exists
in /usr/rje for use by rjedisp and shqer programs. This directory holds those output files that
have been designated as standard input to some executable file. This designation is done via the
��usr=...�� specification. Rjedisp places the output files here and updates the file log to specify the
order of execution, arguments to be passed, etc. Shqer executes the appropriate files.

All RJE programs are shared text; therefore, if more than one RJE is to be run on a given UNIX sys­

19

RJE(8) RJE(8)

tem, simply link (via ln(1)) RJE2 program names to RJE names in /usr.

SEE ALSO

rjestat(1C), send(1C), vpm(4), pnch(5), mk(8).
UNIX Remote Job Entry User’s Guide by K. A. Kelleman.
UNIX Remote Job Entry Administrative Guide by M. J. Fitton.
Setting Up UNIX.

DIAGNOSTICS

Rjeinit provides brief error messages describing obstacles encountered while bringing up RJE. They
can best be understood in the context of the RJE source code. The most frequently occurring one
is ��cannot open /dev/vpm?��. This may occur if the VPM script has not been started, or if another
process already has the VPM device open.

Once RJE has been started, users should assist in monitoring its performance, and should notify
operations personnel of any perceived need for remedial action. Rjestat(1C) will aid in diagnosing
the current state of RJE. It can detect, with some reliability, when the far end of the communica­
tions line has gone dead, and will report in this case that the host computer is not responding to
RJE. It will also attempt to reboot RJE if it detects a prolonged period of inactivity on the KMC-11B.

20

