
Compute r
Systems

G. Bell, D. Siewiorek,
and S.H. Fuller

The Programmer's
Workbench
A Machine for
Software Development
Evan L. Ivie
Bell Telephone Laboratories, Murray Hill

On almost all software development projects the
assumption is made that the program development
function will be done on the same machine on which
the eventual system will run. It is only when this
production machine is unavailable or when its pro-
gramming environment is totally inadequate that alter-
natives are considered. In this paper it is suggested
that there are many other situations where it would be
advantageous to separate the program development
and maintenance function onto a specialized computer
which is dedicated to that purpose. Such a computer is
here called a Programmer's Workbench. The four
basic sections of the paper introduce the subject,
outline the general concept, discuss areas where such
an approach may prove beneficial, and describe an
operational
system utilizing this concept.

Key Words and Phrases: computer configurations,
computer networks, software development, software
engineering, software maintenance, UNIX

CR Categories: 3 .2 , 3 .5 , 3 .7 , 3 .8 , 4 .0

Copyright © 1977, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part of
this material is granted provided that ACM's copyright notice is
given and that reference is made to the publication, to its date of
issue, and to the fact that reprinting privileges were granted by per-
mission of the Association for Computing Machinery.

Author's address: Bell Telephone Laboratories, Inc., 600
Mountain Ave., Murray Hill, NJ 07974.

746

1. Introduction

Although the computer industry now has some 30
years of experience, the programming of computer-
based systems persists in being a very difficult and
costly job. This is particularly true of large and complex
systems where schedule slips, cost overruns, high bug
rates, insufficient throughput , maintenance difficulties,
etc., all seem to be the rule instead of the exception.
Part of the problem stems from the fact that program-
ming is as yet very much a trial and error process.
There are at this point only the beginnings of a
methodology or discipline for designing, building, and
testing software. The situation is further aggravated by
the rapidly changing hardware industry and by the
continuing evolution of operat ing systems which con-
tinues to nullify much of the progress that is made in
the development of programming tools.

What can be done to move the programming indus-
try toward a more professional and stable approach to
software development? Certainly education (courses,
books, conferences, etc.) will play a part in the long
run [1]. And, of course, the development of new
techniques in' programming and program management
will contribute as these techniques are accepted and
put into use. More compatibili ty and standardization
of hardware, operating systems, languages, and pro-
gramming procedures will be of great value. Also, an
increased investment in the development of program-
ming tools and procedures must occur, but much of
this will continue to be lost as computer hardware and
operating systems evolve.

2. The Programmer's Workbench Concept

In this paper a very different approach to improving
the development process is proposed. It is suggested
that the programming communi ty develop a program
development "facility" (or facilities) much like those
that have been developed for other professions (e.g.
carpenter ' s workbench, dentist 's office, engineer 's lab-
oratory).

Such an approach would help focus attention on
the need for adequate tools and procedures; it would
serve as a mechanism for integrating tools into a
coordinated set; and it would tend to add stability to
the programming environment by separating the tools
from the product (the current approach is equivalent
to carpenters leaving their tools in each house they
build).

Figure 1 shows the separation between the Work-
bench, which performs the development and mainte-
nance function, and the host or target computer on
which the production system will run. The link shown
between the two machines represents a physical con-
nection which is used to transfer data, run tests, etc.

The idea of splitting off a well-defined and cohesive
function onto a separate dedicated computer is cer-
tainly not a new idea. Front-end computers for message

Communications October 1977
of Volume 20
the ACM Number 10

Fig. 1. Division of functions between workbench and host.

INTERFACE /...2.__------~ AND MAINTENANCE - - SYSTEM
EQUIPMENT /.

TERMINALS, UNIT PROGRAMMER'S HOST
RECORD EQUIPMENT WORKBENCH COMPUTER

COMPUTER

concentration and line discipline control are in wide
use, having proved to be not only economical, but
beneficial for other reasons also [4]. Back-end com-
puters for database management are just beginning to
impact the database management field [2, 3]. Special-
ized computers for the control of peripherals (disks,
terminals, photocomposers, etc.) have become com-
monplace. Indeed the availability of inexpensive micro-
processors is certainly going to increase the pressure to
go to networks of interacting computers with each
processor performing certain specialized functions. The
proposal that there should be computers which have
been designed and configured to perform just the
program development function is merely a further step
in this direction.

2.1. Workbench Capabilities
The term "Programmer ," in Programmer's Work-

bench, should be taken in its most general sense and
should not be restricted to the coding function. To
emphasize this, the steps which go into the develop-
ment and maintenance of a computer-based system
will be briefly outlined:

Step 1. Define what the application system is to do
(e.g. system specification, functional description).

Step 2. Design the system. This is normally done
at numerous levels of detail (e.g. system, subsystem,
program, subroutine) and for various components of
the system (e.g. the software, the hardware configura-
tion, the user interface, the operating procedures, etc.).

Step 3. Implement the system through installation
of the hardware, coding of the software, writing of
users' manuals, etc.

Step 4. Test and evaluate the system. This occurs
at numerous levels and for various components as in
step 2 and includes the integration of all of the pieces
of the system into a working whole.

Step 5. Convert to the system and cut it over to
live operation. This is generally a much neglected but
significant part of the total job.

Step 6. Operate, support, and maintain the live
system. This involves machine operation, user consul-
tation, software bug fixing and enhancement, hardware
maintenance and change, etc.

Some of the capabilities that the ultimate Program-
mer's Workbench might contain to perform these steps
are as follows:

(1) Generation, modification, and production of specifications,
manuals, catalogs, reports, and documents in general.

(2) Creation, editing, and control of programs and test data.
(3) Compilation, execution, and debugging of programs (either

directly or through the host computer).
(4) System generation, integration, and installation.
(5) Regression testing and load testing of subsystems and of the

total system.
(6) Analysis and reduction of test results.
(7) Tracking of changes to the system (e.g. trouble reports, en-

hancement requests).
(8) Evaluation and monitoring of system performance. Also, sys-

tem modeling and simulation.
(9) Conversion of data files and the loading of the database into

the host for live operation.
(10) Production of lists, reports, and statistics for use by manage-

ment in the control of each phase in the development and
maintenance process.

The implementation of the Workbench concept
described in Section 4 currently includes only capabili-
ties (1), (2), (3), (5), and (7). The full list is presented
here to convey the possible scope of the Workbench
concept.

3. Areas of Applicability of Workbench Concept

Four situations will now be described where a
dedicated machine for program development would be
of particular merit. Some arguments relating to why
the Workbench might or might not be a good approach
in general will then be presented.

3.1. Multi-Vendor Installations
Many companies operate a variety of different

computers. This diversity might occur across several
manufacturers or it might be across several different
models of a given manufacturer. For example, in the
Business Informations Systems Programs (BISP) area
of Bell Laboratories, where the Workbench is in use,
there is an IBM 370/158 and 168, a UNIVAC 1108
and 1110, two Xerox sigma 5's, plus a number of
minicomputers.

Initial efforts in BISP concentrated on development
of a programming environment for each vendor line
(IBM, UNWAC, Xerox). Programming tools were im-
plemented on two and sometimes three machines so
that the tools would be available to all of the projects.
An attempt was also made to keep these tools fully
compatible across machines, but this met with only
partial success.

Part of the motivation which led to the implemen-
tation of the Workbench was based on the realization
that a much better set of tools could be provided for
less money by concentrating efforts on building and
enhancing a single set of development tools. As a
specific example, Figure 2 compares the approximate
costs for developing and maintaining a specific pro-
gramming tool on the Workbench versus doing it
directly on two host machines. Development and main-
tenance costs for the Workbench version actually
turned out to be less than half that of the dual

747 Communications October 1977
of Volume 20
the ACM Number 10

Fig. 2. Comparison of development and maintenance costs for a
specific programming tool (includes both staff and computer time).

WORKBENCH IMPLEMENTATIONS
iMPLEMENTATION ON IBM AND UNIVAC

DEVEI~OPMENT $ 50,000 $ t20,000
(NOT INCLUDING DESIGN)

MAINTENANCE ~ 22,000 $ 56,000
(PER YEAR)

implementat ion, owing perhaps to the bet ter program-
ming environment . The savings would be even more
significant if more than two hosts were included, or if
more than one tool were considered.

A second benefit of the Workbench approach is
the more nearly uniform programming environment
that is possible, even across projects which run on
different computers and under different operat ing sys-
tems. Such a standard environment offers the following
advantages:

(1) Training-It has been found that manic of the
same training courses on programming tools can be
offered to programmers on, for example, both IBM
and UNIVAC projects.

(2) Documentation--Only one set of users ' man-
uals is needed for describing the common programming
tools.

(3) Standards-The development of standard poli-
cies, procedures, and methods relating to program
development and maintenance are greatly simplified
because one no longer has to take account of a multi-
tude of environments every time a standards decision
is made. The enforcement of standards is also simpli-
fied.

(4) Programmer mobility and retraining- Program-
mers can become productive much more quickly when
they are transferred from one project to another.

It should be quickly noted that while the Work-
bench system currently in operat ion (Section 4) has in
general achieved host machine independence for those
tools that have been implemented, there is still much
about the host machine that the p rogrammer must be
painfully aware of. Take , for example, the job control
language. Eventually it may be possible to develop a
universal job control language (jcl) for use of the
Workbench which can be translated into the appropri-
ate jcl for each host. Until then the best the Workbench
can do is to provide various facilities for generating,
concatenating, and modifying host-specific jcl.

In addition to the advantages offered to existing
projects, the Workbench approach also offers substan-
tial benefits to new projects. If a particular Workbench
system has been accepted as the standard approach at
an installation and if all the programmers there are
trained in its use, then a new project can bypass much
of that lengthy "getting s tar ted" period during which
tools and standards are developed, adopted, and
learned. This should save not only money but also
provide a quicker start, and thereby shorten schedules.

748

It would, of course, be necessary to develop a Work-
bench interface to the new host and to expand any
host-dependent tools to handle the new machine.
(However , the only parts of the current implementa-
tion that are host dependent are certain aspects of the
job submission module.)

3.2. Installations in Transition
Even companies that make it a policy to use only

one type of hardware find it necessary to periodically
upgrade their equipment or to change operat ing sys-
tems. The transition to the new equipment or to the
new operat ing system is usually a very painful period.
If the installation were using the Workbench approach,
it could make the transition a less painful process in
several ways.

First, a Change in the program development envi-
ronment is no longer inextricably tied to a change in
the production equipment . That is, changes in the two
machines can be scheduled independently. Indeed,
one would probably want to avoid a change in the
Workbench at the time the production machine is
changing so that all of the p rogrammers ' attention
could be concentrated on the new equipment and so
that they would not have to simultaneously worry
about changes in their tools. This should shorten the
transition period in bringing up the new equipment
significantly. It should also eliminate that difficult
"uncovered" period on a new machine when adequate
tools are not available, and one has to make do with
whatever happens to be provided by the vendor . Then,
after the new production equipment is installed and
operat ional , one could consider upgrading the Work-
bench equipment and/or software.

In addition to being able to stagger changes in the
production equipment with upheavals in the program
development environment , the Workbench approach
also allows one to independently decide upon the
frequency with which changes in these two areas will
occur. Indeed, if one has a good development environ-
ment on a Workbench, it might be well to decide to
adopt a much less frequent change c3)cle, thereby
providing more stability to standards, less retraining,
smaller tool development costs, etc.

One also has more flexibility in upgrading the host
(production) machine when it becomes obvious that
such a move is advantageous. This is true since such a
decision is no longer clouded by considerations of
what it will do to the p rogrammer ' s ability to develop
a code.

3.3. Projects Where Needs of Developer and User
Conflict

One of the most critical decisions in the develop-
ment of a computer-based application is the selection
of the computer on which it is to run. In many cases a
formal selection procedure is not undertaken because
the decision is based on machine availability or other
compelling factors. In those cases where an actual

Communications October 1977
of Volume 20
the ACM Number 10

choice can be made, there is generally a conflict
between the needs of the developer and the user.

If the selection is based strictly on the ability of the
computer to perform the eventual application, then
software developers may have to survive in an environ-
ment that is poorly suited to their needs. If the selection
is based entirely on the needs of the developer then
the target system may perform its functions expensively
if at all. The third possibility is that both the developer
and the user compromise their needs in the machine
selection process. This may, of course, leave neither
very happy.

The development p rogrammer is looking for a
machine that has a powerful command language, so-
phisticated editing tools, flexible and easy to use file
structure, terminal access (t ime-shared), quality docu-
ment production facilities, and good human engineer-
ing in general. The end user is, on the other hand,
more concerned with sufficient throughput and size,
appropriate peripherals and equipment to support the
application, hardware, and software options to opti-
mize certain features (e.g. access methods, block sizes,
physical placement) , special needs in the areas of
availability and reliability, and quality maintenance.

In addition to these potential functional conflicts,
opposing needs can also manifest themselves because
of a desire to utilize existing equipment or because of
the experience and background of the programmers ,
the operators , or the terminal users.

All of these conflicts are based on the assumption
that the development of the software for a project will
be done on the same machine as the one on which the
project will finally run. The Workbench approach
helps to eliminate these built-in conflicts by providing
an independent choice of the computer for the devel-
oper and for the user. No compromises are necessary
and each can choose the machine best suited to their
needs and experience. Here again not only the initial
choice but the frequency with which a change is to be
made is decoupled. This also eliminates possible down-
stream conflicts and compromises.

3.4. Terminal-Oriented Systems
One of the most time consuming and critical parts

of software development is testing, especially total
system testing. If the application being developed
services terminals, the testing is additionally compli-
cated. It is very unsatisfactory to perform such testing
by stationing people at terminals and having them type
in data and examine output. Aside from the cost and
frustration, it also is a nonrepeatable and error-prone
approach. A reasonable solution to this di lemma is to
provide a canned scenario of user interactions that can
be fed into the system in a timed manner. However , if
the insertion of the input messages and the capturing
of the output messages is done in the internal queues,
then the total system is not really being tested (e.g.
terminals, lines, controllers, line servicing software,
etc.). To help circumvent this problem, various " loop

749

back" devices can be developed which allow one
program operating within the computer to send out
data which is returned as though it came from a
terminal.

Such an approach provides more complete testing
but still suffers from certain side effects. For example,
it may be difficult to isolate whether a failure occurred
because of an error in the test driver or in the applica-
tion being tested. This is because of the various possible
interactions that can occur between two systems oper-
ating simultaneously within the same computer . Also
if the application operates on a dedicated computer , it
is impossible to effectively load test it to determine its
total capacity since the test driver is consuming a
portion of the resources. Thus there are special reasons
why a system test facility needs to be on a separate
computer such as a Workbench.

3.5. General Advantages
I t 's probably safe to assume that every installation

will periodically upgrade to a new computer . It is also
fair to say that user and developer needs always conflict
to some extent. Thus, to a greater or lesser extent, the
advantages ascribed to the Workbench approach in
the preceding paragraphs apply to all installations.

Additionally there are potential economies which
may accrue to the Workbench because of specializa-
tion. Applications computers are typically large general
purpose computers with complex operating systems
having many options and features. The Workbench
consists of a specialized set of functions running on a
dedicated system. The hardware configuration for the
Workbench should be much simpler, the operating
system should be less cumbersome, and the actual
tools should therefore be smaller and faster. Front-end
and back-end computers have been found to be eco-
nomically attractive for the same reasons.

Another general advantage to the Workbench is
the fact that it encourages the development of machine
independent programming tools. Each tool must now
function for programmers developing code for a num-
ber of different vendor machines. There is no room
for shortcuts which are dependent on the idiosyncrasies
of a given machine (or a given project). One is thus
forced into a more stable and generalized software
development approach which should be more applica-
ble to new machines.

It has already been noted that a separate program
development facility will help focus attention on the
importance of the programming environment in the
software development process. It should also provide
some stimulus for the integration of the programming
tools operating on the Workbench into a coordinated
set of interconnected functions.

3.6. Potential Disadvantages
Thus far a number of arguments favoring the Work-

bench concept have been presented. The other side of
the ledger will now be examined. One disadvantage to

Communications October 1977
of Volume 20
the ACM Number 10

the Workbench approach is that another machine is
needed which costs money and which is one more link
in the system that can fail. The cost may be counter-
balanced by the fact that the host computer(s) may not
have to be available quite as early in the development
cycle, they may not have to be as big, and fewer may
be needed. Having an extra link that can fail is a
problem if the components cannot do useful work on a
stand-alone basis (e.g. program editing and document
production on the Workbench when the host is down)
or if there is insufficient redundancy (e.g. other Work-
benches to shift the load to when one fails).

In addition to the question of the actual purchase
or rental cost, there may be other "costs" in having a
second (Workbench) machine. For example, them
Workbench machine may be manufactured by a vendor
which is different from the host machine vendor. This
will duplicate all the problems associated with con-
tracts, maintenance procedures, opera tor training, sys-
tem programming support , etc. It will also force the
p rogrammer to be aware of two machines and not just
one. However , if the Workbench has a good user
interface, it may actually be easier for the p rogrammer
to keep track of it and the operat ional aspects of the
host than to use the host tools.

A second general problem relates to the fact that
data and functions are now split between two machines.
This may manifest itself in slower response to some
requests for data and cpu processing because of trans-
mission and queueing delays. It may also result in
some duplication of data to avoid these delays. The
best solution to this problem is a judicious choice of
what data is stored on each machine and what process-
ing is done on each machine. Also, the use of a high
speed link will minimize the delays.

A third problem is the fact that machines use
different character sets, number representat ions, etc.
Thus there is a conversion cost in shipping data back
and forth between machines. (However , in the current
implementat ion this amounts to a very small fraction
of the total Workbench cpu load).

A final problem may occur because a fixed part of
one 's computat ional power is dedicated to a given
function (i.e. program development) . Some flexibility
is thereby lost in being able to balance the computa-
tional load. Potential imbalances can occur in any of
the available resources: cpu, disk, printers, etc. Imbal-
ances may also develop at certain points in the devel-
opment cycle. For example, one may find that the host
is being underutilized during the initial phases of the
project . How serious this problem is depends a great
deal on the relative costs and sizes of Workbench and
host machines. If the Workbench machines are small
and constitute a small fraction of the total computa-
tional budget, then adding or deleting a Workbench
machine to match the total Workbench load may be
adequate. Also, because of the link, some functions
such as printing and disk storage can be shifted from
one machine to the other to help balance the load.

750

4. Description of Current Workbench Implementation

When the potential benefits of, and the possible
difficulties with, the Workbench were first considered,
a number of questions arose. For example, were there
unforeseen problems in the implementat ion or in the
use of a Workbench system which would outweigh all
of the projected advantages? Could such a system be
implemented in a reasonable amount of t ime and with
a modest expenditure of resources? Would program-
mers be willing to try something new and give the
approach an honest trial? Could such a system be
assimilated into an ongoing software development or-
ganization? How many of the benefits would turn out
to be real? How serious would the potential problems
be?

The idea of the Workbench was first conceived in
April 1973. The Business Information Systems Pro-
grams (BISP) area in Bell Laborator ies appeared to be
an ideal environment in which to try the idea because
all of the conditions described in Section 3, for which
the Workbench approach would be beneficial, were
present. Thus the decision was made to try out the
approach on an experimental basis. The first Work-
bench machine was installed in October 1973. Three
additional machines have since been installed with two
more due to be installed in 1976.

The machines currently being used as the Work-
bench machine are the Digital Equipment Corporat ion
PDP 11'S. Initially 11/45's were used; more recently
11/70's have been used. The decision to use PDP 11'S
was based mainly on the fact that the U N I X [6] time-
sharing system opera ted on the PDP 11. U N I X was
developed at Bell Laborator ies by Ken Thompson and
Dennis Ritchie. It is an outgrowth of the M U L T I C S
[5] system, but much simplified and streamlined. It
has offered an ideal base on which to build program
development tools which have been developed thus far.

One of the current Workbench configurations is
shown in Figure 3. Monthly rental for such a system is
in the neighborhood of $6,000. Such a system can
provide good response to 24-30 users simultaneously
logged in. If one assumes that the average user is
logged in about two hours a day, then one POP 11/45
could handle a project of about 100 people. A POP 11/
70 can handle 45-50 users simultaneously or about
double the 11/45 load.

Before discussing the components of the Work-
bench that are in operat ion, a brief comment on
implementat ion philosophy is in order. The idea of
designing and building a complete and fully integrated
Workbench system was rejected for a number of rea-
sons, not the least of which is the fact that no one in
the programming field knows what that system should
look like at this point in time. Instead, every effort
was made to identify some of the immediate needs of
potential users and to develop pieces of the Workbench
that could satisfy those needs quickly. This approach
provided the Workbench designers with much valuable

Communications October 1977
of Volume 20
the ACM Number 10

Fig. 3. Configuration of one of the workbench computers.

CONNECTIONS TO
OTHER PDP 41'S

TERMINALS L ~ ~ ~ ~ l (26 OF 32 (
PORTS ENABLED)

\ /
SECONDARyvSTORAGE

Fig. 4. Example of a workbench job submission network.

WORKBENCHES HOSTS

11/45

user feedback quickly, and it allowed the projects to
start picking up pieces of the Workbench to satisfy
their most critical needs immediately and thus to start
a phased transition to the complete Workbench.

4.1. Basic Components
It is not the purpose of this paper to fully describe

the current Workbench implementat ion. Other papers
are planned which will describe in detail each of the
Workbench subsystems. However , a brief description
of each of the five Workbench components currently
in operation will be presented here to establish the
fact that the basic Workbench concept has in fact been
given a live shakedown with a useful subset of func-
tions. The five basic components of the Workbench
which were selected for initial implementat ion are job
submission, module control, change management , doc-
ument production, and test drivers.

1. Job submission. The whole Workbench concept
depends on having the capability to transfer data easily
and quickly between the workbench and the host
machines. Each Bell Labs Workbench system currently
provides this capability by operating as a remote job
entry (RJE) station to one or more host computers .
Take, for example, the three Workbench machines
currently located in Piseataway, New Jersey. Figure 4
shows the job submission network for these three
machines. In ter-Workbench links provide access to a
host not directly connected to a given Workbench.
There are also links for test drivers which are not
shown in Figure 4.

The RJE facility can be broken into four compo-
nents:

751

(1) Job preparation-- this step performs file concat-
enation (e.g. combining the job control language (jcl)
file with the data file(s)), character conversion (ASCII
to E B C D I C) , and queueing.

(2) Transmission--this component empties the
transmission queue, monitors the status of the com-
munication line, and receives results from the hosts.

(3) Status reporting-facilities are provided so that
Workbench users can determine the overall load on
the host machine and the progress of each individual
job. Each user can select what status is to be sent
automatically. The user can also initiate requests for
status information.

(4) Post processing--the output from each run can
be returned to the Workbench or selectively routed to
a host printer or elsewhere. That which is returned to
the Workbench is placed in the appropriate file for
examination. Various scanning programs have been
developed to help determine such things as the success
of the run, etc. The RJE link does not, of course,
provide direct interaction with a program executing on
the host. This capability is part of the test driver.

2. Module control. In the development of a soft-
ware system, particularly a large system, each program
goes through a number of revisions (releases, versions).
In fact, at any one point in t ime there will probably be
several revisions of a program in use simultaneously.
The revision in use in the field may be different from
the one in trial, which in turn may be different from
the one in system test, which finally may be different
from the one the p rogrammer is working on. Also,
there may be differences caused by different operating
systems, data management systems, and user needs.
Keeping track of all of these revisions is a major task.
An even larger task is to make sure that the right
modifications are applied to the right revisions and not
to the others. The module control system developed
for the Workbench provides:

(1) Creation of any revision of a program from any
previous point in time.

(2) Protection against accidental tampering and
change.

(3) Selective propagat ion of each change to a module
to each of its revisions which should contain that
change.

(4) Identification of object and source (revision num-
ber, date created, etc.).

In addition to programs, all sorts of other documen-
tation on a project also go through many revisions.
The Workbench module control system was general-
ized to handle not only source but any type of text. In
fact, it is currently being used heavily for keeping
track of the evolution of user manuals, test plans,
error lists, etc. The module control system is also
called the Source Code Control System (SCCS) and is
described in [7].

3. Change management . When a software system
goes into production, it becomes necessary to formalize

Communicat ions October 1977
of Volume 20
the ACM Number 10

the way changes are made to it. For a large software
system, some type of formal change control is necessary
fairly early in the development cycle and increases in
importance as time progresses. The mechanism for
change control is usually some type of trouble reporting
form describing the reason why a change (in programs,
hardware, or documents) is needed. To this form is
added information as to who will make the change,
what it consists of, and when it will be made. The Bell
Labs Workbench currently provides a facility for enter-
ing trouble reports into a project database and of
subsequently editing and updating them. Facilities for
generating summary, status, and other reports have
also been developed.

4. Documentation production. Having accurate,
up to date, and understandable documentat ion (e.g.
design specs, test plans, user manuals) is vital to the
success of a project . On a large software project it is
generally a larger and more difficult job to produce
such documentat ion than it is to produce "the source
programs.

A wide variety of document production tools have
been built for the U N I X time sharing system on which
the Workbench operates: text editors, formatters , ty-
pographical error finders, etc. [7]. A phototypeset ter
which provides multiple character fonts and point sizes
has also been connected to the system. A document
writer has the option of having text printed on a
terminal, routed to a host machine for high speed
printing, or sent to the phototypeset ter for high quality
output.

Over the past year a number of "macro packages"
have been developed for the U N I X documentat ion
tools. These packages au tomate the production of
many of the standard document formats used by the
BISP projects by producing headings, footings, labels,
tables of contents, etc. Users can thus produce highly
structured documents with minimal input effort. Typ-
ing pools, document production centers, p rogrammers ,
and managers are all heavy users of this UNIX/Work -
bench facility.

5. Test drivers. Two test drivers have been imple-
mented on the Workbench thus far. The IBM test
driver simulates 1aM 3271 cluster controllers, each
with several 3277 terminals. It serves as a driver to
projects which use the data management systems op-
erating on IBM/360 and IBM/370 computers . The IBM
test driver is used for both load testing and regression
testing. The UNIVAC test driver simulates a teletype
cluster controller with up to four terminals and is used
for regression testing.

4.2 . Possible Extensions
All of the above components are under continuing

revision and improvement . In addition, efforts are
now underway to integrate the current components
into a more closely cooperat ing set of tools. For
example, each change made to a module should be
related to the trouble report(s) that initiated that

7 5 2

change. This will allow one to supply a list of all the
trouble reports that are to be resolved by a given
release of a system and to have the Workbench auto-
matically select which revisions of each program are
needed in that release. Besides integration, several of
the other functions noted in Section 2.1 are in various
stages of planning. The system generation and config-
uration control area is one example. Also, considera-
tion is now being given to connecting the Workbench
to other types of host computers .

In addition to these short term efforts, some long
term objectives are being studied. For example , an
a t tempt may be made to develop a uniform job control
language (jcl) which can be translated into each of the
host jcl's. Also, a standard programming language
might be designed which has code generators for each
of the host machines. The value of this would be
enhanced considerably if a set of Workbench system
calls were devised that could be mapped into system
calls to each of the host operat ing systems. These steps
toward software portability are obviously very difficult
but might well be eventually achieved in an environ-
ment like that offered on the Workbench.

4.3. Workbench Usage
As of February 1976 there were three Workbench

machines in operat ion at the Bell Labs facility in
Piscataway, N.J. and one in use at Murray Hill, N.J.
Workbench facilities are also beginning to be used at
two other Bell Labs locations. The four New Jersey
machines were providing about 2600 hours of connect
time per week to some 300 users, and they were
maintaining disk files containing about 250 million
characters. Both of these figures are expected to double
by mid 1977 (with the addition of two more 11/70's).
All of the Business Information Systems Projects in
Bell Labs are using at least some parts of the system.

4.4 . Example of Use
Perhaps the most effective way to describe the

current operat ion of the Workbench is to give a very
simple example of how it might be used. Assume a
trouble report has been written describing a bug in the
" sum" program. After the p rogrammer responsible
for the maintenance of the program dials in, the
following interaction might take place. (The characters
typed by the p rogrammer are in bold type. The U N I X
prompt symbol is the " % . ")

login Jones
You have mail.

% mail
From smith Fri Mar 14 12:48
1975
tr number: a-75-83-3
originated by: R.H. Johnson
description: The value

printed by the sum pro-
gram is incorrect.

The programmer enters the appro-
priate identification code and is
told that there is mail.

The programmer uses the U N I X
mail command to print the mail
and finds that a trouble report has
been assigned.

Communications
of
the ACM

October 1977
Volume 20
Number 10

% get sum - r 2 - e

2.4
129 lines

% ed sum

8463

/put data/p
put data (subtotal);

s/subtotal/total/p
put data (total);

w
8460
q

% send jcl sum

153 cards
queued as/u3/hasp/xmit07

15:40 /u3/jones/rje/prntl
996.1 dgo ready

% ed prnt l
26845
/TOTAL/p

TOTAL = 93,467
q

% delta sum
history? a-75-83-3 The output

variable should be total, not
subtotal.

128 unchanged
1 inserted
1 deleted

The programmer uses the get com-
mand o f the module control system
to extract the "sum" program at
release 2 (r2) for editing (e).

The get command responds with
the release and level o f the module
(2.4) and its size.

The programmer invokes the
U N I X editor to make the modifi-
cation.

The editor responds with the num-
ber o f characters in the file.

The programmer locates with the
editor search command the line
containing "put data" and prints
it. Note that within the editor there
is no prompting. (It is assumed at
this point that the programmer re-
alizes that the output variable
should be "total.")

The programmer uses the editor
substitute command to change the
variable name from "subtotal" to
"total."

The programmer writes the editor
buffer and exits from the editor.

The programmer uses the send
command o f the job submission
module to send the sum program
to the host machine for a compile
and go run to test the fix. (jcl is a
file containing the necessary job
control statements and test data.)

The send command responds with
the total lines (cards) sent and the
position o f the job in the queue.

The job submission module noti-
fies the programmer that the listing
from the run has been returned to
the Workbench.

The programmer scans the output
listing for the total line and verifies
the value.

The programmer uses the delta
command o f the module control
system to make the change a per-
manent part o f the module's second
release.

The delta program summarizes the
amount o f the change to the mod-
ule.

5. Conclusions

The programming profession has yet to produce a
software development methodology that is sufficiently
general so that it can be transferred from one project
to another and from one machine to another. The
development of a Programmer ' s Workbench, a ma-
chine dedicated to the software development and main-

753

tenance function, can serve as a vehicle for the devel-
opment of such a methodology.

By achieving application and machine indepen-
dence, the Workbench approach can offer significant
economic and other benefits to companies with several
different machines and to companies that are in the
process of installing a new computer . Since the Work-
bench concept allows an independent selection of the
development and the production machines, the capa-
bilities and environment available to both the develop-
ment p rogrammer and to the end user can be opti-
mized. By running on a separate machine, the Work-
bench provides additional advantages to the testing
function.

The Workbench concept has been partially imple-
mented at Bell Laborator ies . In open competi t ion it
has met with enthusiastic user acceptance. Both IBM
and U N I V A C programmers now take advantage of
the U N I X time sharing system and the same set of
Workbench development tools. It is suggested that
this initial success has, in fact, provided some evidence
of the utility of the basic Workbench concept. The
extent to which this approach can be cost-effective at
other installations and under other conditions is still
an open question.

Acknowledgment. The concept of the Programmer ' s
Workbench, its implementat ion, and its acceptance
within Bell Laborator ies are due to the efforts of the
members of the Support Products and Systems Depart-
ment. Much credit is also due to the members of the
Computing Science Research Center who developed
the U N I X time sharing system and the document
production tools. Finally, special thanks go to the
many users of the Programmer ' s Workbench who were
willing to try something new and who have provided
invaluable feedback and support .

Received January 1975; revised July 1976

References
1. Brooks, F.P. Jr. The Mythical Man-Month. Addison-Wesley,
Reading, Mass., 1975.
2. Canaday, R.H., Harrison, R.D., Ivie, E.L., Ryder, J.L., and
Wehr, L.A. A back-end computer for data base management.
Comm A C M 17, 10 (Oct. 1974), 575-582.
3. Ivie, E.L. A back-end computer for data base management.
Presentation at Data Base Management Session of 1973 NCC, New
York, June 1973.
4. Feinroth, Y., Franceschini, E., and Goldstein, M.
Telecommunications using a front-end minicomputer. Comm. A CM
16, 3 (March 1973), 153-160.
5. Organic, E.I. The M U L T I C S System: An Examination o f lts
Structure. M.I.T. Press, Cambridge, Mass., 1972.
6. Ritchie, D.M., and Thompson, K.L. The Unix time-sharing
system. Comm. A C M 17, 7 (July 1974), 365-375.
7. Rochkind, M.J. The source code control system. 1EEE Trans.
Sofiware Eng. SE-1, 4 (Dec. 1975), 364-369.

Communications October 1977
of Volume 20
the ACM Number 10

